
CPSC 340:
Machine Learning and Data Mining

Kernel Trick

Fall 2019

Admin

• Assignment 4:
– Due Friday.

• Midterm:
– Grades posted soon (will be sent to your ugrad e-mail).

– Can view exam during my office hours this week and next week.

• Projects:
– Feedback on Gradescope.

– More details on submission/grading to come.

– Poster presenters: registration information on Piazza.

Motivation: Automatic Brain Tumor Segmentation

• Task: segmentation tumors and normal tissue in multi-modal MRI data.
– We previously discussed using convolutions to engineer features.

• Best performance was obtained with linear classifiers (SVMs/logistic).
– Provided you did feature selection or used regularization.

• One of the only methods that worked better:
– Regularized linear classifier with a low-order polynomial basis (p=2 or p=3).

• Makes the data “closer to separable” in the higher-dimensional space.

Input: Output:

Support Vector Machines for Non-Separable

• Can we use linear models for data that is not close to separable?

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes

Support Vector Machines for Non-Separable

• Can we use linear models for data that is not close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes

Support Vector Machines for Non-Separable

• Can we use linear models for data that is not close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes

Support Vector Machines for Non-Separable

• Can we use linear models for data that is not close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes

Multi-Dimensional Polynomial Basis

• Recall fitting polynomials when we only have 1 feature:

• We can fit these models using a change of basis:

• How can we do this when we have a lot of features?

Multi-Dimensional Polynomial Basis

• Polynomial basis for d=2 and p=2:

• With d=4 and p=3, the polynomial basis would include:

– Bias variable and the xij: 1, xi1, xi2, xi3, xi4.

– The xij squared and cubed: (xi1)2, (xi2)2, (xi3)2, (xi4)2, (xi1)3, (xi2)3, (xi3)3, (xi4)3.

– Two-term interactions: xi1xi2, xi1xi3, xi1xi4, xi2xi3, xi2xi4, xi3xi4.

– Cubic interactions: xi1xi2xi3, xi2xi3xi4, xi1xi3,xi4, xi1xi2xi4,
xi1

2xi2, xi1
2xi3, xi1

2xi4, xi1xi2
2, xi2

2xi3, xi2
2xi4, xi1xi3

2, xi2xi3
2,xi3

2xi4, xi1xi4
2, xi2xi4

2, xi3xi4
2.

Kernel Trick

• If we go to degree p=5, we’ll have O(d5) quintic terms:

• For large ‘d’ and ‘p’, storing a polynomial basis is intractable!
– ‘Z’ has k=O(dp) columns, so it does not fit in memory.

• Could try to search for a good subset of these.
– “Hierarchical forward selection” (bonus).

• Alternating, you can use all of them with the “kernel trick”.
– For special case of L2-regularized linear models.

The “Other” Normal Equations

• Recall the L2-regularized least squares objective with basis ‘Z’:

• We showed that the minimum is given by

(in practice you still solve the linear system, since inverse can be numerically unstable – see CPSC 302)

• With some work (bonus), this can equivalently be written as:

• This is faster if n << k:
– Cost is O(n2k + n3) instead of O(nk2 + k3).

– But for the polynomial basis, this is still too slow since k = O(dp).

The “Other” Normal Equations

• With the “other” normal equations we have

• Given test data ෨𝑋, predict ො𝑦 by forming ෨𝑍 and then using:

• Notice that if you have K and ෩𝐾 then you do not need Z and ෨𝑍.

• Key idea behind “kernel trick” for certain bases (like polynomials):
– We can efficiently compute K and ෩𝐾 even though forming Z and ෨𝑍 is intractable.

Gram Matrix

• The matrix K = ZZT is called the Gram matrix K.

• K contains the dot products between all training examples.
– Similar to ‘Z’ in RBFs, but using dot product as “similarity” instead of distance.

Gram Matrix

• The matrix ෩𝐾 = ෨𝑍ZT has dot products between train and test examples:

• Kernel function: k(xi, xj) = zi
Tzj.

– Computes dot product between in basis (zi
Tzj) using original features xi and xj.

Kernel Trick

Kernel Trick

Linear Regression vs. Kernel Regression

Degenerate Example: “Linear Kernel”

• Consider two examples xi and xj for a 2-dimensional dataset:

• And our standard (“linear”) basis:

• In this case the inner product zi
Tzj is k(xi,xj) = xi

Txj:

Example: Degree-2 Kernel

• Consider two examples xi and xj for a 2-dimensional dataset:

• Now consider a particular degree-2 basis:

• In this case the inner product zi
Tzj is k(xi,xj) = (xi

Txj)
2:

Polynomial Kernel with Higher Degrees

• Let’s add a bias and linear terms to our degree-2 basis:

• In this case the inner product zi
Tzj is k(xi,xj) = (1 + xi

Txj)
2:

Polynomial Kernel with Higher Degrees

• To get all degree-4 “monomials” I can use:

• To also get lower-order terms use k(xi,xj) = (1 + xi
Txj)

4

• The general degree-p polynomial kernel function:

– Works for any number of features ‘d’.

– But cost of computing one k(xi,xj) is O(d) instead of O(dp) to compute zi
Tzj.

– Take-home message: I can compute dot-products without the features.

Kernel Trick with Polynomials

• Using polynomial basis of degree ‘p’ with the kernel trick:

– Compute K and ෩𝐾 using:

– Make predictions using:

• Training cost is only O(n2d + n3), despite using k=O(dp) features.

– We can form ‘K’ in O(n2d), and we need to “invert” an ‘n x n’ matrix.

– Testing cost is only O(ndt), cost to form ෩𝐾.

Gaussian-RBF Kernel

• Most common kernel is the Gaussian RBF kernel:

• Same formula and behaviour as RBF basis, but not equivalent:

– Before we used RBFs as a basis, now we’re using them as inner-product.

• Basis zi giving Gaussian RBF kernel is infinite-dimensional.

– If d=1 and σ=1, it corresponds to using this basis (bonus slide):

Motivation: Finding Gold

• Kernel methods first came from mining engineering (“Kriging”):

– Mining company wants to find gold.

– Drill holes, measure gold content.

– Build a kernel regression model (typically use RBF kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php

Kernel Trick for Non-Vector Data

• Consider data that doesn’t look like this:

• But instead looks like this:

• We can interpret k(xi,xj) as a “similarity” between objects xi and xj.

– We don’t need features if we can compute “similarity” between objects.

– Kernel trick lets us fit regression models without explicit features.

– There are “string kernels”, “image kernels”, “graph kernels”, and so on.

Valid Kernels

• What kernel functions k(xi,xj) can we use?

• Kernel ‘k’ must be an inner product in some space:

– There must exist a mapping from the xi to some zi such that k(xi,xj) = zi
Tzj.

• It can be hard to show that a function satisfies this.

– Infinite-dimensional eigenfunction problem.

• But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– We can compute Euclidean distance with kernels:

– All of our distance-based methods have kernel versions:

• Kernel k-nearest neighbours.

• Kernel clustering k-means (allows non-convex clusters)

• Kernel density-based clustering.

• Kernel hierarchical clustering.

• Kernel distance-based outlier detection.

• Kernel “Amazon Product Recommendation”.

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:

• L2-regularized robust regression.

• L2-regularized brittle regression.

• L2-regularized logistic regression.

• L2-regularized hinge loss (SVMs).

Logistic Regression with Kernels

(pause)

Motivation: Big-N Problems

• Consider fitting a least squares model:

• Gradient methods are effective when ‘d’ is very large.

– O(nd) per iteration instead of O(nd2 + d3) to solve as linear system.

• But what if number of training examples ‘n’ is very large?

– All Gmails, all products on Amazon, all homepages, all images, etc.

Gradient Descent vs. Stochastic Gradient

• Recall the gradient descent algorithm:

• For least squares, our gradient has the form:

• So the cost of computing this gradient is linear in ‘n’.

– As ‘n’ gets large, gradient descent iterations become expensive.

Gradient Descent vs. Stochastic Gradient

• Common solution to this problem is stochastic gradient algorithm:

• Uses the gradient of a randomly-chosen training example:

• Cost of computing this one gradient is independent of ‘n’.

– Iterations are ‘n’ times faster than gradient descent iterations.

– With 1 billion training examples, this iteration is 1 billion times faster.

Summary
• High-dimensional bases allows us to separate non-separable data.
• “Other” normal equations are faster when n < d.
• Kernel trick allows us to use high-dimensional bases efficiently.

– Write model to only depend on inner products between features vectors.

• Kernels let us use similarity between objects, rather than features.
– Allows some exponential- or infinite-sized feature sets.
– Applies to distance-based and linear models with L2-regularization.

• Stochastic gradient methods let us use huge datasets.

• Next time:
– How do we train on all of Gmail?

Feature Selection Hierarchy

• Consider a linear models with higher-order terms,

• The number of higher-order terms may be too large.

– Can’t even compute them all.

– We need to somehow decide which terms we’ll even consider.

• Consider the following hierarchical constraint:

– You only allow w12 ≠ 0 if w1 ≠ 0 and w2 ≠ 0.

– “Only consider feature interaction if you are using both features already.”

Hierarchical Forward Selection

• Hierarchical Forward Selection:

– Usual forward selection, but consider interaction terms obeying hierarchy.

– Only consider w12 ≠ 0 once w1 ≠ 0 and w2 ≠ 0.

– Only allow w123 ≠ 0 once w12 ≠ 0 and w13 ≠ 0 and w23 ≠ 0.

– Only allow w1234 ≠ 0 once all threeway interactions are present.

http://arxiv.org/pdf/1109.2397v2.pdf

Why is inner product a similarity?

• It seems weird to think of the inner-product as a similarity.

• But consider this decomposition of squared Euclidean distance:

• If all training examples have the same norm, then minimizing Euclidean
distance is equivalent to maximizing inner product.
– So “high similarity” according to inner product is like “small Euclidean distance”.

– The only difference is that the inner product is biased by the norms of the
training examples.

– Some people explicitly normalize the xi by setting xi = (1/||xi||)xi, so that inner
products act like the negation of Euclidean distances.
• E.g., Amazon product recommendation.

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” have shown that
any L2-regularized linear model can be kernelized.

– Linear models without regularization fit with gradient descent.

• If you starting at v=0 or with any other value in span of rows of ‘Z’.

