CPSC 340:
Machine Learning and Data Mining
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Last Time: “Global” and “Local” Features .,

Consider the following weird feature transformation for identifying important e-mails:

“CPSS” m “CPSC” (any user) “340” (any user) “CPSC” (user?)

0 User 1
0 w——> 1 0 User 1
1 - 1 1 User 2
0 0 0 <no “CPSC”>
1 1 1 User 3

The categorical (user?) features get expanded out into ‘k’ binary features.
— Where ‘k’ is the number of users.
— All those features are set to O if the word was not used.

“Any user” (“global”) features increase/decrease importance of word for every user.

“User” (“local”) features increase/decrease importance of word for specific users.
— Lets us learn more about users where we have a lot of data

“340” (user?)
<no “340”>
<no “340”>

User 2
<no “340">

User 3



The Big Global/Local Feature Table for E-mails

 Each row is one e-mail (there are lots of rows):
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Predicting Importance of E-mail For New User

e Consider a new user:
— We start out with no information about them.

— So we use global features to predict what is important to a generic user.
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— Local features are initialized to zero.

* With more data, update global features and user’s local features:
— Local features make prediction personalized.
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— What is important to this user? — 1o user

e G-mail system: classification with logistic regression.
— Trained with a variant of stochastic gradient (later).



(pause)



Motivation: Automatic Brain Tumor Segmentation

e Task: segmentation tumors and normal tissue in multi-modal MRI data.
Input: Output:

* Applications:
— Radiation therapy target planning, quantifying treatment responses.
— Mining growth patterns, image-guided surgery.

* Challenges:

— Variety of tumor appearances, similarity to normal tissue.
— “You are never going to solve this problem.”



Naive Voxel-Level Classifier

 We could treat classifying a voxel as supervised learning:

| \/
X = (o[g , l?]) 2‘{6) }/'-: Fumour

* We can formulate predicting y; given x; as supervised learning.
 Butit doesn’t work at all with these features.



Need to Summarize Local Context

* The individual voxel values are almost meaningless:

— This x; could lead to different y..

* Intensities not standardized.
* Non-trivial overlap in signal for different tissue types.
e “Partial volume” effects at boundaries of tissue types.



Need to Summarize Local Context

* We need to represent the spatial “context” of the voxel.

— Include all the values of neighbouring voxels as extra features?

 Variation on coupon collection problem: requires lots of data to find patterns.

— Measure neighbourhood summary statistics (mean, variance, histogram)?

e Variation on bag of words problem: loses spatial information present in voxels.

— Standard approach uses convolutions to represent neighbourhood.



Representing Neighbourhoods with Convolutions

e Consider a 1D dataset:

— Want to classify each
time intoy, in {1,2,3}.
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— Example: speech data.

T:mem test  dala
* Easy to distinguish class 2 from the other classes (x, are smaller).

* Harder to distinguish between class 1 and class 3 (similar x, range).
— But convolutions can represent that class 3 is in “spiky” region.



Representing Neighbourhoods with Convolutions

* Original features (left) and features from convolutions (right):
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e Easy to distinguish the 3 classes with these 2 features.



1D Convolution Example
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* Consider our original “signal”:

* For each “time”: ) ST A
— Compute dot-product of signal at surrounding times with a “filter”.

* This gives a new “signal”: u \, I
_ “w . ” | \ A l | /L
Méasure.s a proPerty of “neighbourhood”. v\fx\/\/v\\ /\/\ [\/\/\/\&

— This particular filter shows a local “! VoI \ |
“how spiky “ value. -l \/ |

-0.25
———————————————



1D Convolution (notation is specific to this lecture)

e 1D convolution input:

— Signal ‘x” which is a vector length ‘n’. )(:[0 123 § 9 /3]
* Indexed by i=1,2,...,n.

— Filter ‘w wh|.ch is a vector of length 2m+1": e [ O - 2 - 07
* Indexed by i=-m,-m+1,...-2,0,1,2,...,m-1,m

wo W, W, W W

* Qutputis a vector of length ‘n” with elements:

Z/' - jémv’{) Xi+J‘

— You can think of this as centering w at position 7,
and taking a dot product of ‘w’ with that “part” x..



1D Convolution

1D convolution example:

Lc‘/ 'S (0;4/'/014716’ ZL/:

—3enal o roli (2 3 5 g 13
\ f G 7 %
SRt af0 - 7 -1 0] ) ) 25T

— Convolution:
2 ®, 1 /
v o2 3 Y 3 6 7 & S

.
" Dot - product: w' Kemim = ()




1D Convolution

1D convolution example: L od's (OMPWLQ z

— Signal: .
XQ[LOl ll(iﬁ?$ Siﬁﬁ\/
— Filter: »LO ~| V:Z -1 0

W’WWWWW] (i.2 3 5 3]

=2 ~( o I
— Convolution: \/\d\\’_\/_d
Z:Cl 23 Cq) E 6 7 SJ] \/
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1D Convolution Examples

* Examples: let x=LO 1 1 2 3 & 1 I%J
— “Identity”

O’Xo“' "Y,+0‘JQ ()‘f,"'"/)"UX;

— “Translation” }5 ?]
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O.XD"" OXa+ ‘Xz



1D Convolution Examples

e Examples:
— “Identity”

o \=C0 | 0)

— “Local Average”
"% % %)

et x=LO | 1 2 3 5 & 13]



Boundary Issue

 What can we do about the “?” at the edges?
T x=C0 1| 236 313) and wil% % %) then 27 % 1% 2 3% S% 8 .7}
e Can assign values past the boundaries:

e “Zero”: x:OO ® ;O \ ’ 2 3 g 8 ’3? O O 0
« “Replicate”: x=0 O O :O | 2 3 T 3 '3j 313 13
* “Mirror”: x= A | l (:O \ | . 5 3 ,3j % g 5

* Orjustignore the “?” values and return a shorter vector:

=[% 1y 2 34 6% %)



Formal Convolution Definition

We’ve defined the convolution as:

m
In other classes you may see it defined as: 0D
m
2= 2w % = g W, d
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For simplicity we’re skipping the “reverse” step,
and assuming ‘w’ and ‘x” are sampled at discrete points (not functions).

(fﬁv-lr&:) /w\)

But keep this mind if you read about convolutions elsewhere.



Convolutions: Big Picture

* How do you use convolutions to get features?
— Apply several different convolutions to your signal/image.
— Each convolution gives a different “signal/image” value at each location.

— Use theses different signal/image values to give features at each location.
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Convolutions: Big Picture

* What can features coming from convolutions represent?

— Some filters give you an average value of the neighbourhood.

— Some filters approximate the “first derivative” in the neighbourhood.
* “Is there a change from low to high (or dark to bright)?”

— Some filters approximate the “second derivative” in the neighbourhood.
* “Is there a spike or is the signal speeding up?”

 Hope: we can characterize “what happens in a neighbourhood”,
with just a few numbers.



1D Convolution Examples

* Translation convolution shift signal:

— “What is my neighbour’s value?”
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1D Convolution Examples

* Averaging convolution (“is signal generally high in this region?”

— Less sensitive to noise (or spikes) than raw signal.
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1D Convolution Examples

¥
-1
* Gaussian convolution “blurs” signal: W; ‘X@Xf’( 201)

— Compared to averaging it’s more smooth and maintains peaks better.

W= [ 00001 00644 00540 01420 (3459 02420 404D 00w 0000/
(6 = I m= 4
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1D Convolution Examples

* Sharpen convolution enhances peaks.
— An “average” that places negative weights on the surrounding pixels.
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1D Convolution Examples

* Centered difference convolution approximates first derivative:

— Positive means change from low to high (negative means high to low).
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Digression: Derivatives and Integrals

* Numerical derivative approximations can be viewed as filters:

— Centered difference: [-1, O, 1] (derivativeCheck in findMin). = /

 Numerical integration approximations can be viewed as filters:

— “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter).
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e Derivative filters add to O, integration filters add to 1,
— For constant function, derivative should be 0 and average = constant.



1D Convolution Examples

e Laplacian convolution approximates second derivative:
— “Sum to zero” filters “respond” if input vector looks like the filter
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Laplacian of Gaussian Filter

 Laplacian of Gaussian is a smoothed 2"¢-derivative approximation:
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Taking Maximums of Convolutions

* Remember our motivation example:

* Laplacian of Gaussian filters looks useful:

— Class 1 and 3 usually often have different values.
* Close to zero for class 1, often far from zero for class 3.
e But class 3 values are still sometimes close to O.

|||||||||

77777
———————————————

 What we take maximum absolute value over 16 adjacent times?



Taking Maximums of Convolutions

* We often use maximum over several convolutions as features:
— On right is the maximum(abs(Laplacian of Gaussian)) at ‘i’ and its 16 KNNs.
— We can solve the problem with just the 2 features below at each location.
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Images and Higher-Order Convolution

* 2D convolution:

— Signal ‘X" is the pixel intensities in an ‘n’ by ‘n” image.

— Filter ‘W’ is the pixel intensities in a ‘2m+1’ by ‘2m+1’ image.
 The 2D convolution is given by:

2[’,)111 =S Z W[-):,)'zj’([”,ﬂi;’)z +J*2i]
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* 3D and higher-order convolutions are defined similarly.
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Convolutions as Features

e Classic vision methods uses convolutions as features:
— Usually have different types/variances/orientations.
— Can take maxes across locations/orientations/scales.

e Notable convolutions:

— Gaussian (blurring/averaging).

— Laplace of Gaussian
(second-derivative).

.

— Gabor filters -
(directional first- or higher-derivative). =
-
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples




Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples e
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples

Gq[aor Cilter
(qussiam VV\\AHIV)“‘fA lay

Sine or (0 éme)

)

(waa”w Vo r‘avx(e)




Image Convolution Examples
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Image Convolution Examples
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3D Convolution
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3D Convolution

Ganssian  Tilter




3D Convolution
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3D Convolution
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3D Convolution
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Filter Banks

 To characterize context, we used to use filter banks like “MR8”:

— 1 Gaussian filter, 1 Laplacian of Gaussian filter. =n
— 6 max(abs(Gabor)) filters: ~ -
3 scales of sine/cosine (maxed over 6 orientations). ==

e Convolutional neural networks (Part 5) are replacing filter banks.



Summary

Convolutions are flexible class of signal/image transformations.
— Can approximate directional derivatives and integrals at different scales.

Max(convolutions) can yield features that make classification easy.
Filter banks:

— Make features for a vision problem by takin a bunch of convolutions.

Next time:
— A trick that lets you find gold and use the polynomial basis with d > 1.



Global and Local Features for Domain Adaptation

Suppose you want to solve a classification task,
where you have very little labeled data from your domain.

But you have access to a huge dataset with the same labels,
from a different domain.
Example:

— You want to label POS tags in medical articles, and pay a few SSS to label
some.

— You have access the thousands of examples of Wall Street Journal POS
labels.

Domain adaptation: using data from different domain to help.



Global and Local Features for Domain Adaptation

* “Frustratingly easy domain adaptation”:

I”

— Use “global” features across the domains, and “local” features for each

domain.
— “Global” features let you learn patterns that occur across domains.
* Leads to sensible predictions for new domains without any data.
— “Local” features let you learn patterns specific to each domain.

* Improves accuracy on particular domains where you have more data.
— For linear classifiers this would look like:
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Image Coordinates

* Should we use the image coordinates?
— E.g., the pixel is at location (124, 78) in the image.

* Considerations:
— |Is the interpretation different in different areas of the image?

— Are you using a linear model?
* Would “distance to center” be more logical?

— Do you have enough data to learn about all areas of the image?



Alignment-Based Features

* The position in the image is important in brain tumour application.

— But we didn’t have much data, so coordinates didn’t make sense.

 We aligned the images with a “template image”.
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Alignment-Based Features

* The position in the image is important in brain tumour application.

— But we didn’t have much data, so coordinates didn’t make sense.

 We aligned the images with a “template image”. Or,m/ pivel

— Allowed “alignment-based” features: Vﬂ/up>
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Motivation: Automatic Brain Tumor Segmentation

* Final features for brain tumour segmentation:

— Gaussian convolution of original/template/priors/symmetry, Laplacian of Gaussian on original.
* All with 3 variances.
* Max(Gabor) with sine and cosine on orgmal (3 variances).
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Motivation: Automatic Brain Tumour Segmentation

e Logistic regression and SVMs among best methods.
— When using these 72 features from last slide.
— If you used all features | came up with, it overfit.

* Possible solutions to overfitting:

— Forward selection was too slow.

* Just one image gives 8 million training examples.
— | did manual feature selection (“guess and check”).
— L2-regularization with all features also worked.

e But this is slow at test time.
* L1-regularization gives best of regularization and feature selection.



FFT implementation of convolution

* Convolutions can be implemented using fast Fourier transform:
— Take FFT of image and filter, multiply elementwise, and take inverse FFT.

* |t has faster asymptotic running time but there are some catches:
— You need to be using periodic boundary conditions for the convolution.

— Constants matter: it may not be faster in practice.
* Especially compared to using GPUs to do the convolution in hardware.

— The gains are largest for larger filters (compared to the image size).



SIFT Features

* Scale-invariant feature transform (SIFT):
— Features used for object detection (“is particular object in the image”?)
— Designed to detect unique visual features of objects at multiple scales.
— Proven useful for a variety of object detection tasks.




