CPSC 340: Machine Learning and Data Mining

Feature Engineering Fall 2019

Admin

- Assignment 3: grades posted soon.
- Assignment 4: due Friday of next week.
- Midterm: grades soon.
 - Can view exams during my office hours next week or the week after.
- **Projects**: may get contacted by TA if there are concerns.
- We got a complaint about people entering classroom too early.
 - Please wait until 1:50pm before entering classroom.

Last Time: Multi-Class Linear Classifiers

- We discussed multi-class linear classification: y_i in {1,2,...,k}.
- One vs. all with +1/-1 binary classifier:
 - Train weights w_c to predict +1 for class 'c', -1 otherwise.

$$W = \begin{bmatrix} w_{1}^{T} \\ w_{2}^{T} \\ w_{K}^{T} \end{bmatrix}$$

– Predict by taking 'c' maximizing $w_c^T x_i$.

• Multi-class SVMs:

- Trains the w_c jointly to encourage maximum $w_c^T x_i$ to be correct $w_{y_i}^T x_i$. $f(w_1, w_2, \dots, w_K) = \sum_{i=1}^{n} \sum_{\substack{l=1\\l \neq y_i}}^{n} \max_{\substack{l \neq 0\\l \neq y_i}}^{n} (y_i^T x_i^T + w_c^T x_i^T + y_l^T + y_l^T x_i^T +$

Multi-Class Logistic Regression

- We derived binary logistic loss by smoothing a degenerate 'max'.
 - A degenerate constraint in the multi-class case can be written as:

$$W_{y_i}^{T}x_i \gtrsim \max_{c} w_c^{T}x_i$$

or $0 \approx -W_{y_i}^{T}x_i + \max_{c} w_c^{T}x_i$

- We want the right side to be as small as possible.
- Let's smooth the max with the log-sum-exp:

$$-W_{y_i}^{\gamma}x_i + \log(\underbrace{\xi}_{z_i}^k exp(w_c^{\gamma}x_i))$$

- This is no longer degenerate: with W=0 this gives a loss of log(k).
- Called the softmax loss, the loss for multi-class logistic regression.

Multi-Class Logistic Regression

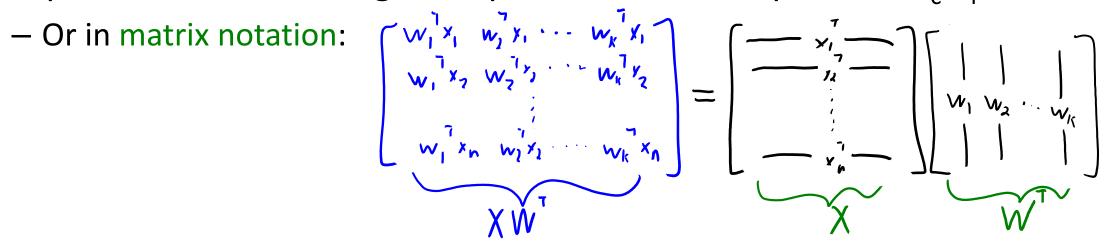
• We sum the loss over examples and add regularization:

$$f(W) = \sum_{i=1}^{k} \left[-w_{y_{i}}^{T}x_{i} + \log\left(\sum_{i=1}^{k} exp(w_{c}^{T}x_{i})\right)\right] + \frac{1}{2}\sum_{i=1}^{k} \frac{1}{w_{cj}}$$
Tries to $Approximates \max_{i} \frac{1}{w_{c}} \frac{1}{x_{i}} \frac{1}{x_{cj}} \frac{$

- This objective is convex (should be clear for 1st and 3rd terms).
 It's differentiable so you can use gradient descent.
- When k=2, equivalent to using binary logistic loss.
 - Not obvious at the moment.

Multi-Class Linear Prediction in Matrix Notation

- In multi-class linear classifiers our weights are:
- To predict on all training examples, we first compute all $w_c^T x_i$.



So predictions are maximum column indices of XW^T (which is 'n' by 'k').

Digression: Frobenius Norm

• The Frobenius norm of a ('k' by 'd') matrix 'W' is defined by:

• We can use this to write regularizer in matrix notation:

$$\frac{1}{2} \sum_{c=1}^{k} \sum_{j=1}^{k} w_{cj}^{2} = \frac{1}{2} \sum_{c=1}^{k} ||w_{c}||^{2} \quad ("L_{2} regularizer on each vector")$$
$$= \frac{1}{2} ||W||_{F}^{2} \quad ("Frobunius regularizer on matrix")$$

(pause)

Feature Engineering

 "...some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used."

– Pedro Domingos

- "Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering."
 - Andrew Ng

Feature Engineering

• Better features usually help more than a better model.

- Good features would ideally:
 - Allow learning with few examples, be hard to overfit with many examples.
 - Capture most important aspects of problem.
 - Reflects invariances (generalize to new scenarios).
- There is a trade-off between simple and expressive features:
 - With simple features overfitting risk is low, but accuracy might be low.
 - With complicated features accuracy can be high, but so is overfitting risk.

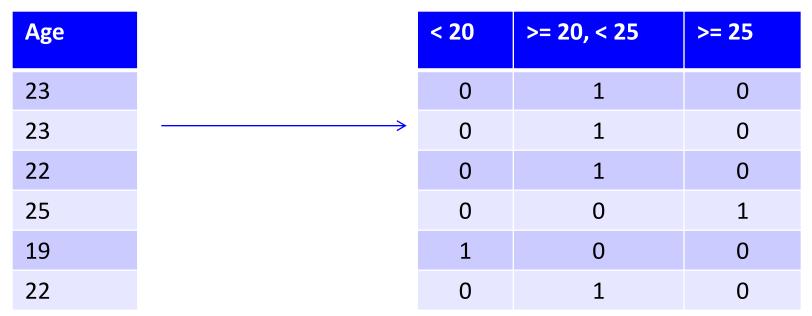
Feature Engineering

• The best features may be dependent on the model you use.

- For counting-based methods like naïve Bayes and decision trees:
 - Need to address coupon collecting, but separate relevant "groups".
- For distance-based methods like KNN:
 - Want different class labels to be "far".
- For regression-based methods like linear regression:
 - Want labels to have a linear dependency on features.

Discretization for Counting-Based Methods

- For counting-based methods:
 - Discretization: turn continuous into discrete.



- Counting age "groups" could let us learn more quickly than exact ages.

• But we wouldn't do this for a distance-based method.

Standardization for Distance-Based Methods

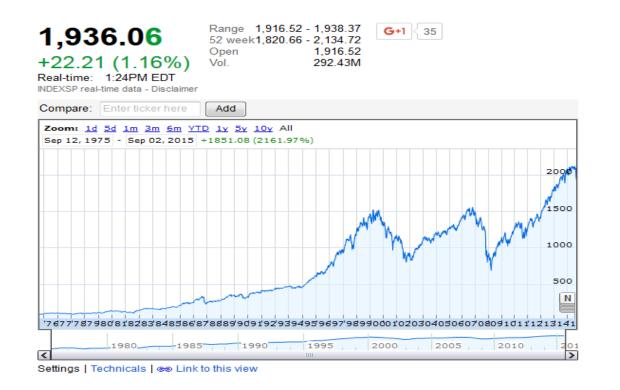
• Consider features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It doesn't matter for counting-based methods.
- It matters for distance-based methods:
 - KNN will focus on large values more than small values.
 - Often we "standardize" scales of different variables (e.g., convert everything to grams).
 - Also need to worry about correlated features.

Non-Linear Transformations for Regression-Based

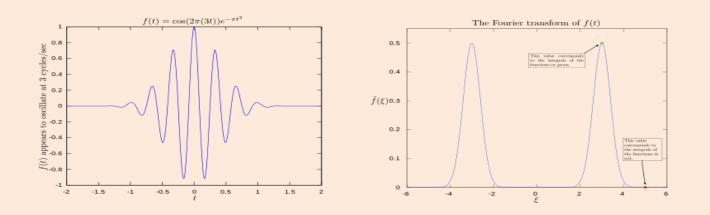
- Non-linear feature/label transforms can make things more linear:
 - Polynomial, exponential/logarithm, sines/cosines, RBFs.

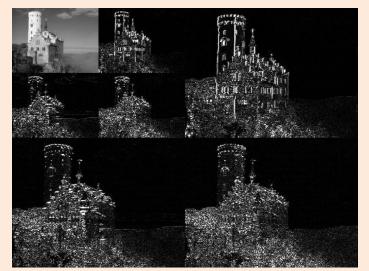


Settings | Technicals | 📾 Link to this view

Domain-Specific Transformations

- In some domains there are natural transformations to do:
 - Fourier coefficients and spectrograms (sound data).
 - Wavelets (image data).
 - Convolutions (we'll talk about these soon).





https://en.wikipedia.org/wiki/Fourier_transform https://en.wikipedia.org/wiki/Spectrogram https://en.wikipedia.org/wiki/Discrete_wavelet_transform

Discussion of Feature Engineering

- The best feature transformations are application-dependent.
 It's hard to give general advice.
- My advice: ask the domain experts.
 - Often have idea of right discretization/standardization/transformation.
- If no domain expert, cross-validation will help.
 Or if you have lots of data, use deep learning methods from Part 5.
- Next: I'll give some features used for text/image applications.

(pause)

But first...

- How do we use categorical features in regression?
- Standard approach is to convert to a set of binary features:
 "1 of k" or "one hot" encoding.

Age	City	Income		Age	Van	Bur	Sur	Income
23	Van	22,000.00		23	1	0	0	22,000.00
23	Bur	21,000.00		23	0	1	0	21,000.00
22	Van	0.00	\longrightarrow	22	1	0	0	0.00
25	Sur	57,000.00		25	0	0	1	57,000.00
19	Bur	13,500.00		19	0	1	0	13,500.00
22	Van	20,000.00		22	1	0	0	20,000.00

- What if you get a new city in the test data?
 - Common approach: set all three variables to 0.

Digression: Linear Models with Binary Features

- What is the effect of a binary features on linear regression?
- Suppose we use a bag of words:
 - With 3 words {"hello", "Vicodin", "340"} our model would be:

- If e-mail only has "hello" and "340" our prediction is:

$$\bigwedge_{Y_i} = \bigvee_{\substack{"h_0/l_0"\\ weight}} + \bigvee_{\substack{Y_i \\ Y_i \\ Weight}}$$

- So having the binary feature 'j' increases \hat{y}_i by the fixed amount w_i .
 - Predictions are a bit like naïve Bayes where we combine features independently.
 - But now we're learning all w_i together so this tends to work better.

Text Example 1: Language Identification

• Consider data that doesn't look like this:

$$X = \begin{bmatrix} 0.5377 & 0.3188 & 3.5784 \\ 1.8339 & -1.3077 & 2.7694 \\ -2.2588 & -0.4336 & -1.3499 \\ 0.8622 & 0.3426 & 3.0349 \end{bmatrix}, \quad y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix},$$

• But instead looks like this:

$$X = \begin{bmatrix} \text{Do you want to go for a drink sometime?} \\ \text{J'achète du pain tous les jours.} \\ \text{Fais ce que tu veux.} \\ \text{There are inner products between sentences?} \end{bmatrix}, y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}$$

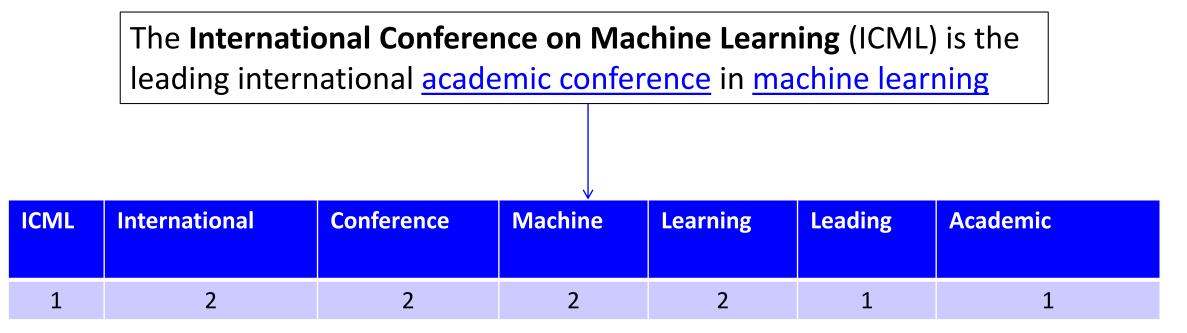
• How should we represent sentences using features?

A (Bad) Universal Representation

- Treat character in position 'j' of the sentence as a categorical feature.
 - "fais ce que tu veux" => x_i = [f a i s " c e " q u e " t u " v e u x .]
- "Pad" end of the sentence up to maximum #characters:
 - "fais ce que tu veux" => $x_i = [fais "ce "que "tu "veux. \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \dots]$
- Advantage:
 - No information is lost, KNN can eventually solve the problem.
- Disadvantage: throws out everything we know about language.
 - Needs to learn that "veux" starting from any position indicates "French".
 - Doesn't even use that sentences are made of words (this must be learned).
 - High overfitting risk, you will need a lot of examples for this easy task.

Bag of Words Representation

• Bag of words represents sentences/documents by word counts:



• Bag of words loses a ton of information/meaning:

- But it easily solves language identification problem

Universal Representation vs. Bag of Words

- Why is bag of words better than "string of characters" here?
 - It needs less data because it captures invariances for the task:
 - Most features give strong indication of one language or the other.
 - It doesn't matter *where* the French words appear.
 - It overfits less because it throws away irrelevant information.
 - Exact sequence of words isn't particularly relevant here.

Text Example 2: Word Sense Disambiguation

- Consider the following two sentences:
 - "The cat ran after the mouse."
 - "Move the mouse cursor to the File menu."
- Word sense disambiguation (WSD): classify "meaning" of a word:
 A surprisingly difficult task.
- You can do ok with bag of words, but it will have problems:
 - "Her mouse clicked on one cat video after another."
 - "We saw the mouse run out from behind the computer."
 - "The mouse was gray." (ambiguous without more context)

Bigrams and Trigrams

- A bigram is an ordered set of two words:
 - Like "computer mouse" or "mouse ran".
- A trigram is an ordered set of three words:
 - Like "cat and mouse" or "clicked mouse on".
- These give more context/meaning than bag of words:
 - Includes neighbouring words as well as order of words.
 - Trigrams are widely-used for various language tasks.
- General case is called n-gram.
 - Unfortunately, coupon collecting becomes a problem with larger 'n'.

Text Example 3: Part of Speech (POS) Tagging

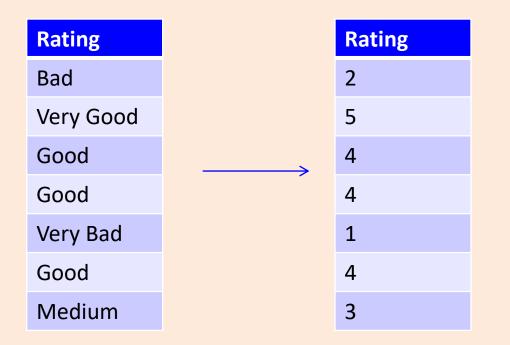
- Consider problem of finding the verb in a sentence:
 - "The 340 students jumped at the chance to hear about POS features."
- Part of speech (POS) tagging is the problem of labeling all words.
 - >40 common syntactic POS tags.
 - Current systems have ~97% accuracy on standard ("clean") test sets.
 - You can achieve this by applying a "word-level" classifier to each word.
 - That independently classifies each word with one of the 40 tags.
- What features of a word should we use for POS tagging?

POS Features

- Regularized multi-class logistic regression with these 19 features gives ~97% accuracy:
 - Categorical features whose domain is all words ("lexical" features):
 - The word (e.g., "jumped" is usually a verb).
 - The previous word (e.g., "he" hit vs. "a" hit).
 - The previous previous word.
 - The next word.
 - The next next word.
 - Categorical features whose domain is combinations of letters ("stem" features):
 - Prefix of length 1 ("what letter does the word start with?")
 - Prefix of length 2.
 - Prefix of length 3.
 - Prefix of length 4 ("does it start with JUMP?")
 - Suffix of length 1.
 - Suffix of length 2.
 - Suffix of length 3 ("does it end in ING?")
 - Suffix of length 4.
 - Binary features ("shape" features):
 - Does word contain a number?
 - Does word contain a capital?
 - Does word contain a hyphen?

Ordinal Features

• Categorical features with an ordering are called ordinal features.



- If using decision trees, makes sense to replace with numbers.
 - Captures ordering between the ratings.
 - A rule like (rating \geq 3) means (rating \geq Good), which make sense.

Ordinal Features

- With linear models, "convert to number" assumes ratings are equally spaced.
 - "Bad" and "Medium" distance is similar to "Good" and "Very Good" distance.
- One alternative that preserves ordering with binary features:

Rating	≥ Bad	≥ Medium	≥ Good	Very Good
Bad	1	0	0	0
Very Good	1	1	1	1
Good	 1	1	1	0
Good	1	1	1	0
Very Bad	0	0	0	0
Good	1	1	1	0
Medium	1	1	0	0

- Regression weight w_{medium} represents:
 - "How much medium changes prediction over bad".

(pause)

Motivation: "Personalized" Important E-mails

COMPOSE	🗆 ☆ 🖻	Mark Issam, Ricky (10)	Inbox A2, tutorials, marking @ 10:41 am
and the second se		Holger, Jim (2)	lists Intro to Computer Science 10:20 am
Inbox (3) Starred	🗆 🕁 💌	Issam Laradji	Inbox Convergence rates for cu
Important	🗆 ☆ 💌	sameh, Mark, sameh (3)	Inbox Graduation Project Dema C 8:01 am
Sent Mail	□ ☆ >	Mark sara, Sara (11)	Label propagation @ 7:57 am

- Features: bad of words, trigrams, regular expressions, and so on.
- There might be some "globally" important messages:
 - "This is your mother, something terrible happened, give me a call ASAP."
- But your "important" message may be unimportant to others.
 - Similar for spam: "spam" for one user could be "not spam" for another.

"Global" and "Local" Features

• Consider the following weird feature transformation:

"340"		"340" (any user)	"340" (user?)
1		1	User 1
1	\rightarrow	1	User 1
1		1	User 2
0		0	<no "340"=""></no>
1		1	User 3

- First feature: did "340" appear in this e-mail?
- Second feature: if "340" appeared in this e-mail, who was it addressed to?
- First feature will increase/decrease importance of "340" for every user (including new users).
- Second (categorical feature) increases/decreases important of "340" for specific users.
 - Lets us learn more about specific users where we have a lot of data

"Global" and "Local" Features

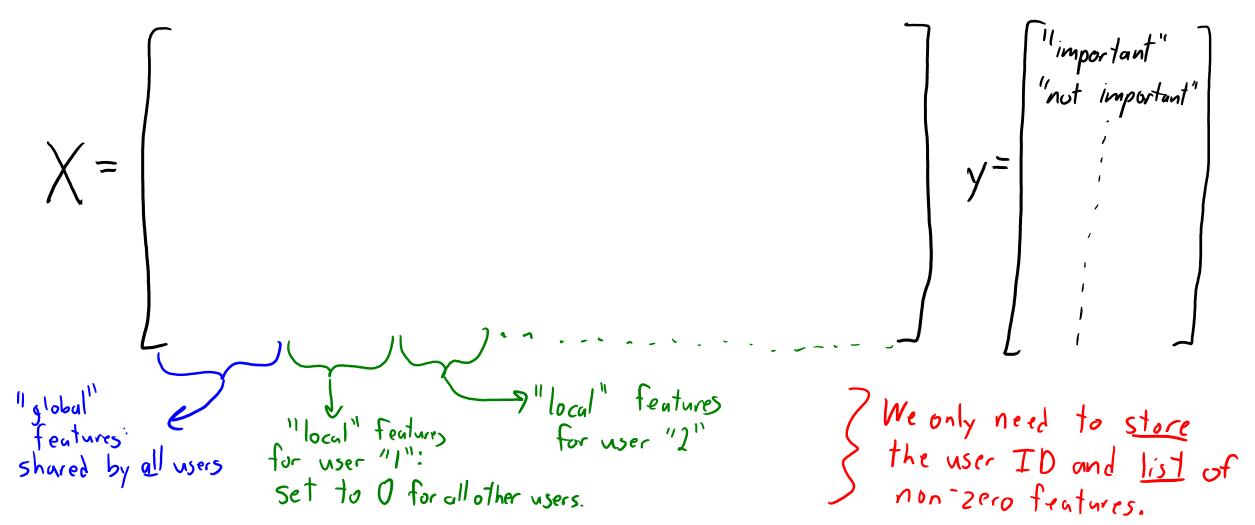
• Recall we usually represent categorical features using "1 of k" binaries:

"340"		"340" (any user)	"340" (user = 1)	"340" (user = 2)
1		1	1	0
1	$ \rightarrow $	1	1	0
1		1	0	1
0		0	0	0
1		1	0	0

- First feature "moves the line up" for all users.
- Second feature "moves the line up" when the e-mail is to user 1.
- Third feature "moves the line up" when the e-mail is to user 2.

The Big Global/Local Feature Table for E-mails

• Each row is one e-mail (there are lots of rows):



Summary

- Softmax loss is a multi-class version of logistic loss.
- Feature engineering can be a key factor affecting performance.
 Good features depend on the task and the model.
- Bag of words: not a good representation in general.
 But good features if word order isn't needed to solve problem.
- Text features (beyond bag of words): trigrams, lexical, stem, shape.
 Try to capture important invariances in text data.
- Global vs. local features allow "personalized" predictions.

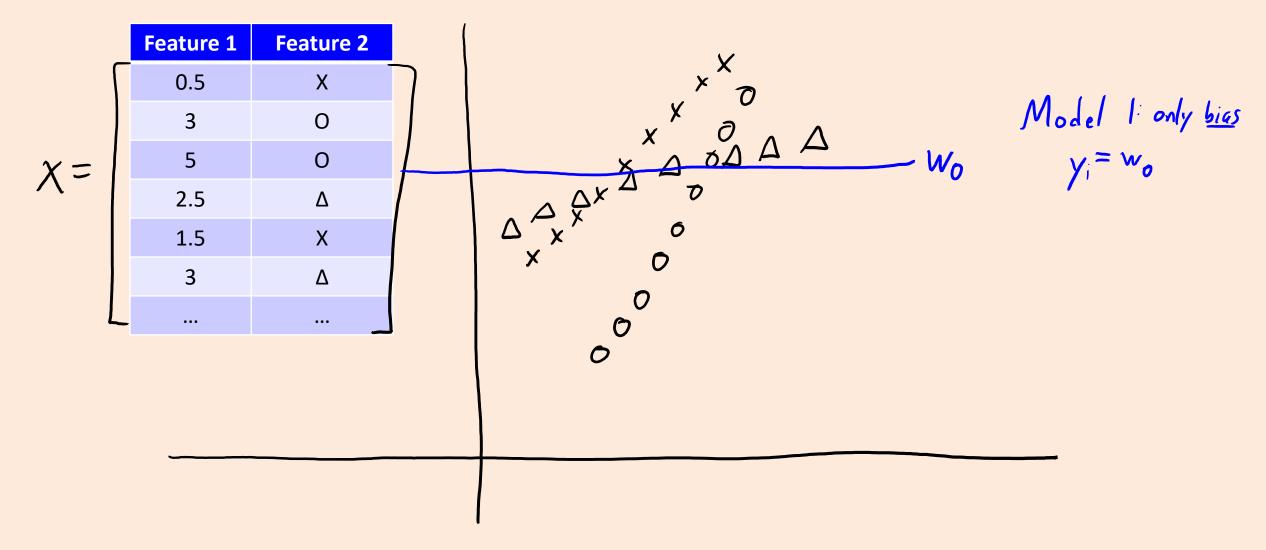
• Next time: feature engineering for image and sound data.

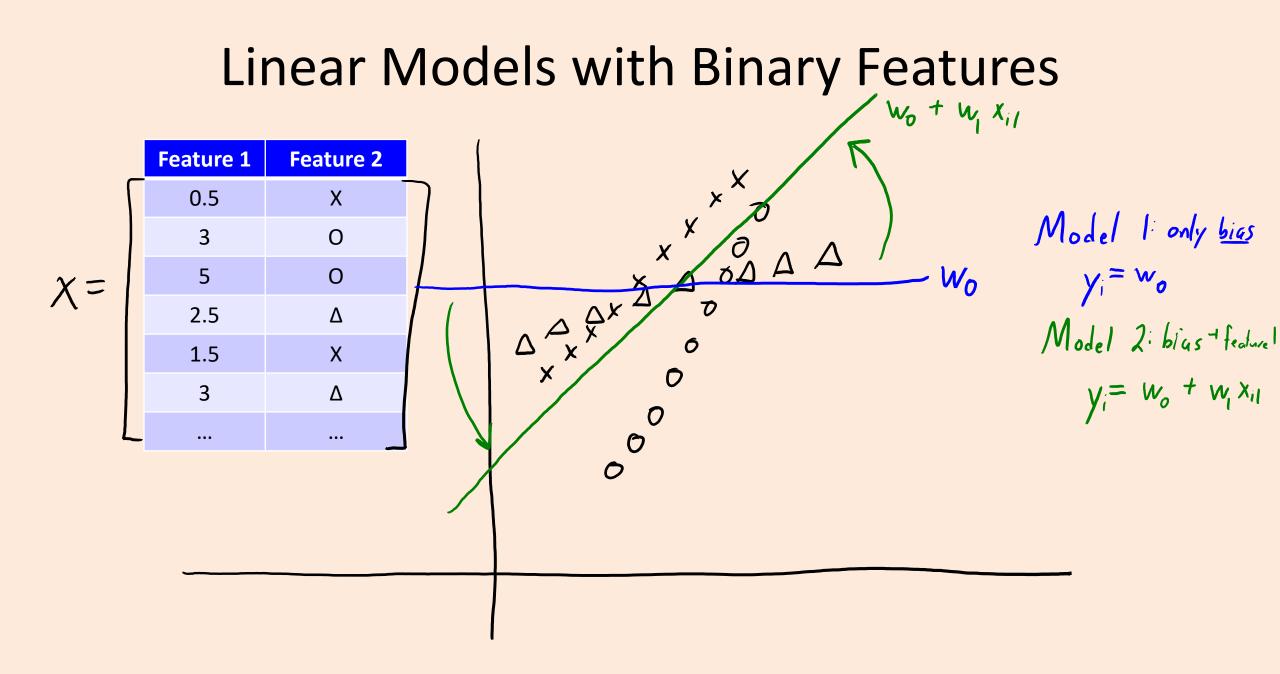
Linear Models with Binary Features

		Feature 1	Feature 2	
		0.5	Х	
		3	0	
(=		5	0	
\mathbf{N}^{-}		2.5	Δ	
		1.5	Х	
		3	Δ	
L	_			

$ \begin{array}{c} & & & \times & & & & & \\ & & & & & & & & & & \\ & & & &$

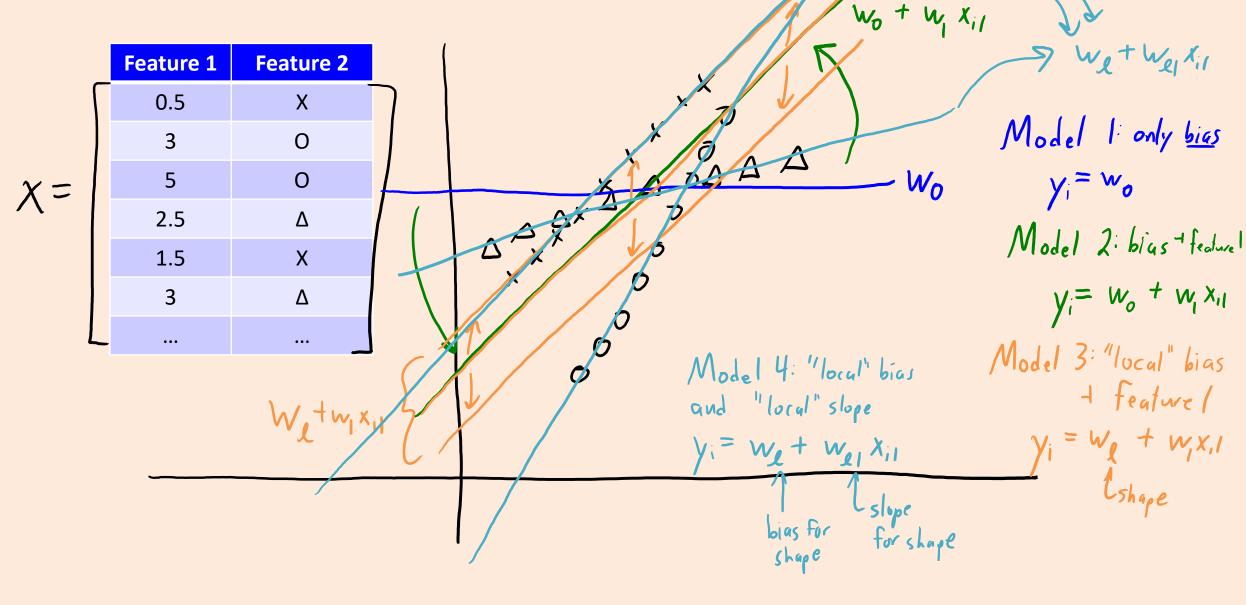
Linear Models with Binary Features







Linear Models with Binary Features



Linear Models with Binary Features $W_0 + W_1 X_{i1}$ We + We Xil Feature 1 Feature 2 0.5 Х Model 1: only bies 0 3 Yi= wo 5 0 Wo $\chi =$ 2.5 Δ Model 2: bias + feature! 1.5 Х $y_i = w_o + w_i x_{ii}$ 3 Δ Ø Model 3: "local" bias Model 4: "local" bias \mathcal{O} + feature (and "local" slope Wtwx $\gamma_i = W_i + W_i x_i I$ $y_i = w_i + w_{ij} x_{ij}$ Could also share information across *Ushape* Lslope categories with global bias slope bias for for shape Shape $y_i = w_0 + w_1 x_{i1} + w_2 + w_{e1} x_{i2}$