CPSC 340:
Machine Learning and Data Mining

Linear Classifiers
Fall 2019

Last Time: L1-Regularization

* We discussed L1-regularization:

F)= L= 112+ Al

— Also known as “LASSO” and “basis pursuit denoising”.
— Regularizes ‘w’ so we decrease our test error (like L2-regularization).
— Yields sparse ‘W’ so it selects features (like LO-regularization).

* Properties:
— It’s convex and fast to minimize (with “proximal-gradient” methods).

— Solution is not unique (sometimes people do L2- and L1-regularization).
— Usually includes “correct” variables but tends to yield false positives.

Ensemble Feature Selection

e We can also use ensemble methods for feature selection.

— Usually designed to reduce false positives or reduce false negatives.

* In this case of L1-regularization, we want to reduce false positives.

— Unlike LO-regularization, the non-zero w; are still “shrunk”.

* “Irrelevant” variables can be included before “relevant” W reach best value.

* A bootstrap approach to reducing false positives:
— Apply the method to bootstrap samples of the training data.
— Only take the features selected in all bootstrap samples.

Ensemble Feature Selection
- feafuc stlech- 3 Sz {/) 2, 3)77 7}2 \
i3

X‘ o
TN,
\)Xm _ 5 Fog [slechr o Syf %2)3)5_) 7) fj /

/Y/ \/Y\/
O Ran Tentare selech Tt wection
S o lt!). on @ach Sample i
[— f O{ selec f«ecl ?947(0”5«

* Example: bootstrapping plus L1-regularization (“BoLASSO”).
— Reduces false positives.
— It’s possible to show it recovers “correct” variables with weaker conditions.

(pause)

Motivation: Identifying Important E-mails

* How can we automatically identify ‘important’ e-mails?

| » Mark .. Issam, Ricky (10) inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) ists Intro to Computer Science 10:20 am
Inbox (3) N
» Issam Laradji inbox Convergence rates forcu = 9:49 am
Starred
<!mpor§nt > * sameh, Mark, sameh (3) Inbox Graduation ProjectDema = 8:01 am
Sent Mai - :
g » Mark .. sara, Sara (11) Label propagation = 7:57am

* A binary classification problem (“important” vs. “not important”).

— Labels are approximated by whether you took an “action” based on mail.
— High-dimensional feature set (that we’ll discuss later).

* Gmail uses regression for this binary classification problem.

Binary Classification Using Regression?

* Can we apply linear models for binary classification?

— Set y, = +1 for one class (“important”).

— Set y, = -1 for the other class (“not important”).
e At training time, fit a linear regression model:

)/' = W, X,, twy Xyt 00wy xy
—_ W yl
* The model will try to make w'x. = +1 for “important” e-mails,
and w'x. = -1 for “not important” e-mails.

Binary Classification Using Regression?

* Can we apply linear models for binary classification?
— Set y, = +1 for one class (“important”).
— Set y, = -1 for the other class (“not important”).

* Linear model gives real numbers like 0.9, -1.1, and so on.

* So to predict, we look at whether w'x. is closer to +1 or -1.
— If wix. = 0.9, predict y, = +1.
— If wix. =-1.1, predict y. = -1.
— If wix. = 0.1, predict y, = +1.
— If wix. =-100, predict y, = -1.
— We write this operation (rounding to +1 or -1) as ¥, = sign(w'x,).

Decision Boundary in 1D

\”’

X

¥ X ¥ ¥ x ¥ et

Z\/
')neqr' r (7Nssim

nﬂoxe,
N 1
Yim WX

i»’)or‘/au'{

\

Decision Boundary in 1D

y
/O(Ar U"Dreah'(,'/‘| ‘rmn(;f;an

Z\/
')neqr‘ r (t’NSSl(I/)

nnoJe‘
N 1
Yim WX

'l}m‘)or+¢“1 '

* We can interpret ‘w’ as a hyperplane separating x into sets:
— Set where w'x. > 0 and set where w'x, < 0.

Decision Boundary in 2D

decision tree KNN linear classifier

— The boundary is at §,=0.

Should we use least squares for classification?
Consider training by minimizing squared error with y. that are +1 or -1:

{(W)_:'i:g“Xw‘/“Z ;j"
A :;J

f we predict w'x, = +0.9 and y, = +1, error is srﬁa'II: (0.9-1)?=0.01.

f we predict w'x, =-0.8 and y, = +1, error is bigger: (-0.8 — 1)? = 3.24.

f we predict w'x, = +100 and vy, = +1, error is huge: (100 — 1)? = 9801.

— But it shouldn’t be, the prediction is correct.

Least squares penalized for being “too right”.
— 4100 has the right sign, so the error should not be large.

Should we use least squares for classification?

e Least squares can behave weirdly when applied to classification:

(ret spam) -

O
(5"07'\) - l“

e Why? Squared

Thl) l,S Hr\e INear r([,NSSw\ MOCl l we \A/m’l"
[/ (a rerrec" 'assnfaer)

Htme we
Sce "vicodin®

L XX X X x x ¥ [x T X x ¥

error of\green line is huge!

— Make sure you understand why the green line achieves O training error.

“0-1 Loss” Function: Minimizing Classification Errors

e Could we instead minimize number of classification errors?
— This is called the 0-1 loss function:

* You either get the classification wrong (1) or right (0).

— We can write using the LO-norm as | |y-vy]| |,.

* Unlike regression, in classification it’s reasonable that y =y, (it’s either +1 or -1).

* Important special case: “linearly separable” data.

— Classes can be “separated” by a hyper-plane.
— So a perfect linear classifier exists.

Perceptron Algorithm for Linearly-Separable Data

One of the first “learning” algorithms was the “perceptron” (1957).
— Searches for a ‘w’ such that sign(w'x,) =y, for all i.

Perceptron algorithm:
— Start with w® = 0.

— Go through examples in any order until you make a mistake predicting vy..
¢ Setw'l=w!+yx.
— Keep going through examples until you make no errors on training data.

If a perfect classifier exists, this algorithm finds one in finite number of steps.

Intuition:
— Consider a case where w'x, < 0 but y, = +1.
— In this case the updates “adds more of x, to w” so that w'x; is larger.

(Wf+l)7)<,- = (\Nt + x) 'y = @vt)Tx,- + x % = (old r,,J-,d,M> + ”X,-//‘z

— Ify, = -1, you would be subtracting the squared norm.

https://en.wikipedia.org/wiki/Perceptron

History [edit]

- - -

= -
. ¥ =3 =3 =

The Mark | Perceptron machine was &J
the first implementation of the
perceptron algorithm. The machine was
connected to a camera that used
20x20 cadmium sulfide photocells to
produce a 400-pixel image. The main
visible feature is a patchboard that
allowed experimentation with different
combinations of input features. To the
right of that are arrays of
potentiometers that implemented the
adaptive weights.#?"?

Zi 7(:)(1'2 o5’)%7

Geometry of why we want the 0-1 loss

"foo rig ht"

"Eecor' or "loss' for ffédléf)/\,’ w7x,‘

[— when true |abel \/; s =/

Prediclion
t/{ ~ WTXi
) J\)

w
yOV\ Should Y_Loj

penalize for ruﬂiq wai heye.

Thoughts on the previous (and next) slide

* We are now plotting the loss vs. the predicted w'x..
— “Loss space”, which is different than parameter space or data space.

* We're plotting the individual loss for a particular training example.

— In the figure the label is y,= -1 (so loss is centered at -1).
* It will be centered at +1 when y, = +1.

— The objective in least squares regression is a sum of ‘n’ of these losses:

IRV VSV S VA

* (The next slide is the same as the previous one)

Geometry of why we want the 0-1 loss

"foo rig ht"

"Eecor' or "loss' for ffédléf)/\,’ w7x,‘

[— when true |abel \/; s =/

Prediclion
t/{ ~ WTXi
) J\)

w
yOV\ Should Y_Loj

penalize for ruﬂiq wai heye.

Geometry of why we want the 0-1 loss

"foo rig ht"

"Eecor' or "loss' for ffédléf)/\,’ w7x,‘

o when trf! |abe Vi i —[

Prediclion
l — — T
1"/ w X
A NG .

w
yOV\ Should Y_Loj

penalize for ruﬂiq wai heye.

Geometry of why we want the 0-1 loss

"foo rig ht"

S

| ,

' Error“ or "/oss“ ‘)(\Of ffedldiml w7x.‘

when f7! labe | Vi 15 -

VVAML we \A__/gﬂj 1S

(the "O-1 foss'

Prediclion

Y=t

7
yOV\ Should Y__Qj

\

WTX i

_J

0

penalize for ruﬂin, wai heve.

—
qu‘n, w'Xi here S éa_J

0-1 Loss Function

* Unfortunately the O-1 loss is non-convex in ‘wW’.
— It’s easy to minimize if a perfect classifier exists (perceptron).
— Otherwise, finding the ‘w’ minimizing 0-1 loss is a hard problem.

— Gradient is zero everywhere: don’t even know “which way to go”.

— NOT the same type of problem we had with using the squared loss.

* We can minimize the squared error, but it might give a bad model for classification.

* Motivates convex approximations to 0-1 loss...

Degenerate Convex Approximation to 0-1 Loss

If y. = +1, we get the label right if wx. > 0.
If y. = -1, we get the label right if w'x, < 0, or equivalently —w'x. > 0.
So “classifying ‘i’ correctly” is equivalent to having y.w'x. > 0.

One possible convex approximation to 0-1 loss:

— Minimize how much this constraint is violated.

Lf Y VV7_>(; 70 the \you gle an "ervoc of () -
I.‘:)ﬁ‘”')’i <O 'Hnm yuu \()‘Q" an //€h’0r\\ 07C —in,)(,‘

“"?So ‘“)c ”Cfror“)S 9(\/&4 lo\/ W Gx §0)“’\/5w7x,-§
—

max E Cons Toudl - livew § =7 Conw

Hinge Loss: Convex Approximation to O-1 Loss

' 6ff0(“ or ”/055“ ‘)(\00' reolld)n W7 '
2 f W
(w_’x,--'ya) [__ when true |abel \/i s =/

/)
/ Prediclion
= - T
7I:_I w X
We receve q h”[ﬂ error
.F()f jeﬁ'{‘n} S

ﬁh(w ’Xi) ' fUO mf ht 'f

24

Degenerate Convex Approximation to 0-1 Loss

Our convex approximation of the error for one example is:
1
Maxi0 = yiw x§
We could train by minimizing sum over all examples:

¥) Zw\ax / Xz

But this has a degenerate solution:
— We have f(0) = 0, and this is the lowest possible value of ‘.

There are two standard fixes: hinge loss and logistic loss.

Hinge Loss

We saw that we classify examples ‘i’ correctly if yw'x, > 0.
— Our convex approximation is the amount this inequality is violated.

Consider replacing y,w'x. > 0 with y.w'x. > 1.
(the “1” is arbitrary: we could make | |w| | bigger/smaller to use any positive constant)

The violation of this constraint is now given by:

T
Mas {07 [~ yiw yig
This is the called hinge loss.

— It’s convex: max(constant,linear).
— It's not degenerate: w=0 now gives an error of 1 instead of O.

Hinge Loss: Convex Approximation to O-1 Loss

V‘“O"ef'h?ﬂ of e I'\'m,e [055’

’. Hqs eror of O I‘F WTX,'é“l
(o \uemffy q‘f\;..l e yond This ’wi"‘f)
A Has a loss of | iF w 'k =0

(mathes O~ [oss af decision bowndar

"Ecroe" or "loss” For J)reol;d)m] w
when true |abel Vi is ~[

S

Prediclion

——

o

ENE ConveX and ' losc" 7":-1
TO d—/ Io;}.

w X

27

Hinge Loss: Convex Approximation to O-1 Loss

[_" Ecroc” or "loss’ for predicting wx,
when true |abel Vi s +.

E V(’/‘\/-,_him7 iS /

Mirrpred if Yi:”

Prediclion
w X

.

Cor\v()(an({ 6
“'W_J.}Lm.éo\vé 0-l loss

O

28

Hinge Loss

* Hinge loss for all ‘n’ training examples is given by:
n -
tw)= 2 maxi0, | Y w X§
j=0

— Convex upper bound on 0-1 loss.
* If the hinge loss is 18.3, then number of training errors is at most 18.
* So minimizing hinge loss indirectly tries to minimize training error.
* Like perceptron, finds a perfect linear classifier if one exists.

e Support vector machine (SVM) is hinge loss with L2-regularization.
n -
1) 2max30, [~ yw'%d + L2
j=a

— There exist specialized optimization algorithm for this problems.
— SVMs can also be viewed as “maximizing the margin” (later).

Go Votel

Last day to vote in Canadian election is Monday.
— If you are eligible you should go vote, and make sure all your friends vote too.

If you have some time, read “where the parties stand on everything”:

— https://www.macleans.ca/politics/2019-federal-election-platform-guide-where-the-parties-stand-on-
everything

If you don’t have much time: https://votecompass.cbc.ca/canada
— Tries to vector quantize you into a political parties.

This is the first Canadian election in my life where “baby boomers” aren’t largest voting group.
— (# eligible millennial voters) > (# eligible voters born shortly after World War 2).
— But the parties don’t align with young people’s views, because more boomers show up to vote.

The parties will start to reflect young people’s views if you show them it will get them votes.
— This is an opportunity people my age never had, use it to make a better future!

https://www.macleans.ca/politics/2019-federal-election-platform-guide-where-the-parties-stand-on-everything
https://votecompass.cbc.ca/canada

Summary

Ensemble feature selection reduces false positives or negatives.

Binary classification using regression:

— Encode usingy; in {-1,1}.

— Use sign(w'x;) as prediction.

— “Linear classifier” (a hyperplane splitting the space in half).

Least squares is a weird error for classification.

Perceptron algorithm: finds a perfect classifier (if one exists).
0-1 loss is the ideal loss, but is non-smooth and non-convex.

Hinge loss is a convex upper bound on 0-1 loss.
— SVMs add L2-regularization.

Next time: one of the best “out of the box” classifiers.

L1-Regularization as a Feature Selection Method

* Advantages:
— Deals with conditional independence (if linear).

— Sort of deals with collinearity:
e Picks at least one of “mom” and “mom?2”.

— Very fast with specialized algorithms.
* Disadvantages:
— Tends to give false positives (selects too many variables).

* Neither good nor bad:
— Does not take small effects.
— Says “gender” is relevant if we know “baby”.

— Good for prediction if we want fast training and don’t care about having
some irrelevant variables included.

“Elastic Net”: L2- and L1-Regularization

* To address non-uniqueness, some authors use L2- and L1-:

() ={ =yl + D 1P + 3)

-2
2

e Called “elastic net” regularization.
— Solution is sparse and unique.
— Slightly better with feature dependence:

e Selects both “mom” and “mom?2”.

* Optimization is easier though still non-differentiable.

L1-Regularization Debiasing and Filtering

 To remove false positives, some authors add a debiasing step:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.
— Re-fit relevant ‘w’ using least squares or L2-regularized least squares.

* Arelated use of L1-regularization is as a filtering method:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.
— Run standard (slow) variable selection restricted to relevant variables.

* Forward selection, exhaustive search, stochastic local search, etc.

Non-Convex Regularizers

Regularizing |w;| 2 selects all features.
Regularizing |wj| selects fewer, but still has many false positives.
What if we regularize |w;|*? instead? 2

Minimizing this objective would lead to fewer false positives.
— Less need for debiasing, but it’s not convex and hard to minimize.

There are many non-convex regularizers with similar properties.
— L1-regularization is (basically) the “most sparse” convex regularizer.

Can we just use least squares??

* What went wrong?

— “Good” errors vs. “bad” errors.

This ‘s the Iinenr— r(qﬂssiw\ model we Wanl

[/ (a F”Fed classiﬁer)

\ , l -ﬁ ﬁmo wée
l L J Sce ”v'lw:"mn
| Ay
So~— (77 AT
300 errors: ‘iv) "
model\ s lacimj Bad ™ errors: model

peralizy) for 'feJuM\j 1S beivaq ft’l\a’ilt’c‘ for
w C((ASS\ f{icl\('/lvﬂ Corr((J c/nff,

Can we just use least squares??

N
- 2
* What went wrong? —V(w)“é (W' ‘yi>
— “Good” errors vs. “bad” errors. - L l
KT‘M} s h‘c iINear rtqﬂ‘swx MOA ’ we Wwﬂl \M\il h'a rmjc/nc
.- on
(0' rer‘Fec" classn‘ratr) 7' - = -/000’?
(r\of ’?qm>+ ,
Htime we
O Sce vicodin”
(Sram) I Fyx xr x[y~<& x ¥ 'Ba J“ errors of
| | fhe porkect
’meur c/ass:-fOf
are HYGE .

Online Classification with Perceptron

e Perceptron for online linear binary classification [Rosenblatt, 1957]
— Start with w, = 0.
— At time ‘t” we receive features x.
— We predict y, = sign(w,'x,).
— Ify, 2y, thensetw, , = w, +y.Xx..
* Otherwise, set w,,, = w,.

(Slides are old so above I’'m using subscripts of ‘t” instead of superscripts.)

e Perceptron mistake bound [Novikoff, 1962]:
— Assume data is linearly-separable with a “margin”: .
* There exists w* with | |w*| |=1 such that sign(x,"'w*) = sign(y,) for all ‘t” and |x'w*| 2 V?O
— Then the number of total mistakes is bounded.
* No requirement that data is IID.

Perceptron Mistake Bound

* Let’s normalize each x, so that | |x,| | = 1.
— Length doesn’t change label.

* Whenever we make a mistake, we have sign(y,) # sign(w,'x,) and
lwes ||* = [lwe + yae®

lwe||* + 2gtwfa:t +1

<0
< Jlwe||* +1
< ’wt—1|2+2
< 'wt_2|2+3.

* So after ‘k’ errors we have | |w,| |2 < k.

Perceptron Mistake Bound

* Let’s consider a solution w*, so sign(y,) = sign(x,'w*).
— And let’s choose a w* with | |w*| | =1,

e Whenever we make a mistake, we have:
lwiga]| = lwiga[[lws]
> Wi Wy
= (wt + yrze) " W
= 'th'w* + yta:tTw*
— 'th'w* + |:L’tT’w*\
> 'th'w* + .
— Note: w,'w. > 0 by induction (starts at 0, then at least as big as old value plus y).
* So after 'k’ mistakes we have | |w,| | = yk.

Perceptron Mistake Bound

* So our two bounds are | |w,|| <sqgrt(k) and | |w,|| = yk.

* This gives yk < sqrt(k), or a maximum of 1/y? mistakes.
— Note that y > 0 by assumption and is upper-bounded by one by | x| | < 1.

— After this ‘k’, under our assumptions
we’re guaranteed to have a perfect classifier.

