
CPSC 340:
Machine Learning and Data Mining

More Regularization

Fall 2019

Admin

• Midterm is tomorrow.
– October 17th at 6:30pm.
– Last names starting with A-L: West Mall Swing Space Room 121.
– Last names starting with M-Z: West Mall Swing Space Room 221.
– 80 minutes.
– Closed-book.
– One doubled-sided ‘cheat sheet’ for midterm.
– Auditors do not take the midterm.

• There will be two types of questions on the midterm:
– ‘Technical’ questions requiring things like pseudo-code or derivations.

• Similar to assignment questions, and will only be on topics related to those in assignments.

– ‘Conceptual’ questions testing understanding of key concepts.
• All lecture slide material except “bonus slides” is fair game here.

Last Time: L2-Regularization

• We discussed regularization:

– Adding a continuous penalty on the model complexity:

– Best parameter λ almost always leads to improved test error.

• L2-regularized least squares is also known as “ridge regression”.

• Can be solved as a linear system like least squares.

– Numerous other benefits:

• Solution is unique, less sensitive to data, gradient descent converges faster.

Parametric vs. Non-Parametric Transforms

• We’ve been using linear models with polynomial bases:

• But polynomials are not the only possible bases:

– Exponentials, logarithms, trigonometric functions, etc.

– The right basis will vastly improve performance.

– If we use the wrong basis, our accuracy is limited even with lots of data.

– But the right basis may not be obvious.

Parametric vs. Non-Parametric Transforms

• We’ve been using linear models with polynomial bases:

• Alternative is non-parametric bases:

– Size of basis (number of features) grows with ‘n’.

– Model gets more complicated as you get more data.

– Can model complicated functions where you don’t know the right basis.

• With enough data.

– Classic example is “Gaussian RBFs” (“Gaussian” == “normal distribution”).

• Gaussian RBFs are universal approximators (compact subets of ℝd)
– Enough bumps can approximate any continuous function to arbitrary precision.

– Achieve optimal test error as ‘n’ goes to infinity.

Gaussian RBFs: A Sum of “bumps”

Gaussian RBFs: A Sum of “Bumps”
• Polynomial fit:

• Constructing a function from bumps (“smooth histogram”):

Gaussian RBF Parameters

• Some obvious questions:

1. How many bumps should we use?

2. Where should the bumps be centered?

3. How high should the bumps go?

4. How wide should the bumps be?

• The usual answers:

1. We use ‘n’ bumps (non-parametric basis).

2. Each bump is centered on one training example xi.

3. Fitting regression weights ‘w’ gives us the heights (and signs).

4. The width is a hyper-parameter (narrow bumps == complicated model).

Gaussian RBFs: Formal Details

• What is a radial basis functions (RBFs)?

– A set of non-parametric bases that depend on distances to training points.

– Have ‘n’ features, with feature ‘j’ depending on distance to example ‘i’.

– Most common ‘g’ is Gaussian RBF:

• Variance σ2 is a hyper-parameter controlling “width”.
– This affects fundamental trade-off (set it using a validation set).

Gaussian RBFs: Formal Details

• What is a radial basis functions (RBFs)?

– A set of non-parametric bases that depend on distances to training points.

Gaussian RBFs: Pseudo-Code

Non-Parametric Basis: RBFs

• Least squares with Gaussian RBFs for different σ values:

RBFs and Regularization

• Gaussian Radial basis functions (RBFs) predictions:

– Flexible bases that can model any continuous function.

– But with ‘n’ data points RBFs have ‘n’ basis functions.

• How do we avoid overfitting with this huge number of features?

– We regularize ‘w’ and use validation error to choose 𝜎 and λ.

RBFs, Regularization, and Validation

• A model that is hard to beat:
– RBF basis with L2-regularization and cross-validation to choose 𝜎 and λ.

– Flexible non-parametric basis, magic of regularization, and tuning for test error.

– Can add bias or linear/poly basis to do better away from data.

– Expensive at test time: need distance to all training examples. 14

RBFs, Regularization, and Validation

• A model that is hard to beat:
– RBF basis with L2-regularization and cross-validation to choose 𝜎 and λ.

– Flexible non-parametric basis, magic of regularization, and tuning for test error!

– Expensive at test time: needs distance to all training examples.

15

Hyper-Parameter Optimization

• In this setting we have 2 hyper-parameters (𝜎 and λ).

• More complicated models have even more hyper-parameters.

– This makes searching all values expensive (increases over-fitting risk).

• Leads to the problem of hyper-parameter optimization.

– Try to efficiently find “best” hyper-parameters.

• Simplest approaches:

– Exhaustive search: try all combinations among a fixed set of σ and λ values.

– Random search: try random values.

Hyper-Parameter Optimization

• Other common hyper-parameter optimization methods:
– Exhaustive search with pruning:

• If it “looks” like test error is getting worse as you decrease λ, stop decreasing it.

– Coordinate search:
• Optimize one hyper-parameter at a time, keeping the others fixed.

• Repeatedly go through the hyper-parameters

– Stochastic local search:
• Generic global optimization methods (simulated annealing, genetic algorithms, etc.).

– Bayesian optimization (Mike’s PhD research topic):
• Use RBF regression to build model of how hyper-parameters affect validation error.

• Try the best guess based on the model.

(pause)

Previously: Search and Score

• We talked about search and score for feature selection:

– Define a “score” and “search” for features with the best score.

• Usual scores count the number of non-zeroes (“L0-norm”):

• But it’s hard to find the ‘w’ minimizing this objective.

• We discussed forward selection, but requires fitting O(d2) models.

Previously: Search and Score

• What if we want to pick among millions or billions of variables?

• If ‘d’ is large, forward selection is too slow:

– For least squares, need to fit O(d2) models at cost of O(nd2 + d3).

– Total cost O(nd4 + d5).

• The situation is worse if we aren’t using basic least squares:

– For robust regression, need to run gradient descent O(d2) times.

– With regularization, need to search for lambda O(d2) times.

L1-Regularization

• Instead of L0- or L2-norm, consider regularizing by the L1-norm:

• Like L2-norm, it’s convex and improves our test error.

• Like L0-norm, it encourages elements of ‘w’ to be exactly zero.

• L1-regularization simultaneously regularizes and selects features.

– Very fast alternative to search and score.

– Sometimes called “LASSO” regularization.

L2-Regularization vs. L1-Regularization

• Regularization path of wj values as ‘λ’ varies:

• L1-Regularization sets values to exactly 0 (next slides explore why).

Sparsity and Least Squares

• Consider 1D least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• This variable does not look relevant (minimum is close to 0).
– But for finite ‘n’ the minimum is unlikely to be exactly zero.

Sparsity and L0-Regularization

• Consider 1D L0-regularized least squares objective:

• This is a convex 1D quadratic function but with a discontinuity at 0:

• L0-regularized minimum is often exactly at the ‘discontinuity’ at 0:
– Sets the feature to exactly 0 (does feature selection), but is non-convex.

Sparsity and L2-Regularization

• Consider 1D L2-regularized least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• L2-regularization moves it closer to zero, but not all the way to zero.
– It doesn’t do feature selection (“penalty goes to 0 as slope goes to 0”).

Sparsity and L1-Regularization

• Consider 1D L1-regularized least squares objective:

• This is a convex piecwise-quadratic function of ‘w’ with ‘kink’ at 0:

• L1-regularization tends to set variables to exactly 0 (feature selection).
– Penalty on slope is 𝜆 even if you are close to zero.
– Big 𝜆 selects few features, small 𝜆 allows many features.

Sparsity and Regularization (with d=1)

Regularizers and Sparsity

• L1-regularization gives sparsity but L2-regularization doesn’t.

– But don’t they both shrink variables towards zero?

L2-Regularization vs. L1-Regularization

• L2-Regularization:

– Insensitive to changes in data.

– Decreased variance:

• Lower test error.

– Closed-form solution.

– Solution is unique.

– All ‘wj’ tend to be non-zero.

– Can learn with linear number of
irrelevant features.

• E.g., only O(d) relevant features.

• L1-Regularization:

– Insensitive to changes in data.

– Decreased variance:

• Lower test error.

– Requires iterative solver.

– Solution is not unique.

– Many ‘wj’ tend to be zero.

– Can learn with exponential number
of irrelevant features.

• E.g., only O(log(d)) relevant features.
Paper on this result by Andrew Ng

http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-and-rotational-invariance/

L1-loss vs. L1-regularization

• Don’t confuse the L1 loss with L1-regularization!

– L1-loss is robust to outlier data points.

• You can use this instead of removing outliers.

– L1-regularization is robust to irrelevant features.

• You can use this instead of removing features.

• And note that you can be robust to outliers and irrelevant features:

• Can we smooth and use “Huber regularization”?

– Huber regularizer is still robust to irrelevant features.

– But it’s the non-smoothness that sets weights to exactly 0. 30

L*-Regularization

• L0-regularization (AIC, BIC, Mallow’s Cp, Adjusted R2, ANOVA):

– Adds penalty on the number of non-zeros to select features.

• L2-regularization (ridge regression):

– Adding penalty on the L2-norm of ‘w’ to decrease overfitting:

• L1-regularization (LASSO):

– Adding penalty on the L1-norm decreases overfitting and selects features:

L0- vs. L1- vs. L2-Regularization
Sparse ‘w’

(Selects Features)
Speed Unique ‘w’ Coding Effort Irrelevant

Features

L0-Regularization Yes Slow No Few lines Not Sensitive

L1-Regularization Yes* Fast* No 1 line* Not Sensitive

L2-Regularization No Fast Yes 1 line A bit sensitive

• L1-Regularization isn’t as sparse as L0-regularization.
– L1-regularization tends to give more false positives (selects too many).

– And it’s only “fast” and “1 line” with specialized solvers.

• Cost of L2-regularized least squares is O(nd2 + d3).
– Changes to O(ndt) for ‘t’ iterations of gradient descent (same for L1).

• “Elastic net” (L1- and L2-regularization) is sparse, fast, and unique.

• Using L0+L2 does not give a unique solution.

Summary

• Radial basis functions:

– Non-parametric bases that can model any function.

• L1-regularization:

– Simultaneous regularization and feature selection.

– Robust to having lots of irrelevant features.

• Next time: are we really going to use regression for classification?

Regularizers and Sparsity

• L1-regularization gives sparsity but L2-regularization doesn’t.

– But don’t they both shrink variables to zero?

• Consider problem where 3 vectors can get minimum training error:

• Without regularization, we could choose any of these 3.

– They all have same error, so regularization will “break tie”.

• With L0-regularization, we would choose w2:

Regularizers and Sparsity

• L1-regularization gives sparsity but L2-regularization doesn’t.

– But don’t they both shrink variables to zero?

• Consider problem where 3 vectors can get minimum training error:

• With L2-regularization, we would choose w3:

• L2-regularization focuses on decreasing largest (makes wj similar).

Regularizers and Sparsity

• L1-regularization gives sparsity but L2-regularization doesn’t.

– But don’t they both shrink variables to zero?

• Consider problem where 3 vectors can get minimum training error:

• With L1-regularization, we would choose w2:

• L1-regularization focuses on decreasing all wj until they are 0.

Why doesn’t L2-Regularization set variables to 0?

• Consider an L2-regularized least squares problem with 1 feature:

• Let’s solve for the optimal ‘w’:

• So as λ gets bigger, ‘w’ converges to 0.

• However, for all finite λ ‘w’ will be non-zero unless yTx = 0 exactly.

– But it’s very unlikely that yTx will be exactly zero.

Why doesn’t L2-Regularization set variables to 0?

38

• Small 𝜆 Big 𝜆

• Solution further from zero Solution closer to zero
(but not exactly 0)

Why does L1-Regularization set things to 0?

39

• Small λ Big λ

• Solution nonzero Solution exactly zero
(minimum of left parabola is past origin, but right parabola is not) (minimum of both parabola are past the origin)

Why does L1-Regularization set things to 0?

• Consider an L1-regularized least squares problem with 1 feature:

• If (w = 0), then “left” limit and “right“ limit are given by:

• So which direction should “gradient descent” go in?

L2-regularization vs. L1-regularization

• So with 1 feature:

– L2-regularization only sets ‘w’ to 0 if yTx = 0.

• There is a only a single possible yTx value where the variable gets set to zero.

• And λ has nothing to do with the sparsity.

– L1-regularization sets ‘w’ to 0 if |yTx| ≤ λ.

• There is a range of possible yTx values where the variable gets set to zero.

• And increasing λ increases the sparsity since the range of yTx grows.

• Note that it’s important that the function is non-differentiable:

– Differentiable regularizers penalizing size would need yTx = 0 for sparsity.

L1-Loss vs. Huber Loss

• The same reasoning tells us the difference between the L1 *loss*
and the Huber loss. They are very similar in that they both grow
linearly far away from 0. So both are both robust but…

– With the L1 loss the model often passes exactly through some points.

– With Huber the model doesn’t necessarily pass through any points.

• Why? With L1-regularization we were causing the elements of ’w’
to be exactly 0. Analogously, with the L1-loss we cause the
elements of ‘r’ (the residual) to be exactly zero. But zero residual
for an example means you pass through that example exactly.

42

Non-Uniqueness of L1-Regularized Solution

• How can L1-regularized least squares solution not be unique?

– Isn’t it convex?

• Convexity implies that minimum value of f(w) is unique (if exists),
but there may be multiple ‘w’ values that achieve the minimum.

• Consider L1-regularized least squares with d=2, where feature 2 is a
copy of a feature 1. For a solution (w1,w2) we have:

• So we can get the same squared error with different w1 and w2 values
that have the same sum. Further, if neither w1 or w2 changes sign, then
|w1| + |w2| will be the same so the new w1 and w2 will be a solution.

Splines in 1D

• For 1D interpolation, alternative to polynomials/RBFs are splines:
– Use a polynomial in the region between each data point.

– Constrain some derivatives of the polynomials to yield a unique solution.

• Most common example is cubic spline:
– Use a degree-3 polynomial between each pair of points.

– Enforce that f’(x) and f’’(x) of polynomials agree at all point.

– “Natural” spline also enforces f’’(x) = 0 for smallest and largest x.

• Non-trivial fact: natural cubic splines are sum of:
– Y-intercept.

– Linear basis.

– RBFs with g(ε) = ε3.
• Different than Gaussian RBF because it increases with distance.

http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea-/node35.html

Splines in Higher Dimensions

• Splines generalize to higher dimensions if data lies on a grid.

– Many methods exist for grid-structured data (linear, cubic, splines, etc.).

– For more general (“scattered”) data, there isn’t a natural generalization.

• Common 2D “scattered” data interpolation is thin-plate splines:

– Based on curve made when bending sheets of metal.

– Corresponds to RBFs with g(ε) = ε2 log(ε).

• Natural splines and thin-plate splines: special cases of
“polyharmonic” splines:

– Less sensitive to parameters than Gaussian RBF.

http://step.polymtl.ca/~rv101/thinplates/

L2-Regularization vs. L1-Regularization

• L2-regularization conceptually restricts ‘w’ to a ball.

L2-Regularization vs. L1-Regularization

• L2-regularization conceptually restricts ‘w’ to a ball.

• L1-regularization restricts to the L1 “ball”:
– Solutions tend to be at corners where wj are zero.

Related Infinite Series video

https://www.youtube.com/watch?v=ineO1tIyPfM&t=596s

