
CPSC 340:
Machine Learning and Data Mining

Nonlinear Regression

Fall 2019



Last Time: Linear Regression

• We discussed linear models:

• “Multiply feature xij by weight wj, 
add them to get yi”.

• We discussed squared error function:

• Interactive demo: 

– http://setosa.io/ev/ordinary-least-squares-regression

http://www.bloomberg.com/news/articles/2013-01-10/the-dunbar-number-from-the-guru-of-social-networks

http://setosa.io/ev/ordinary-least-squares-regression


Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:

– We use ‘w’ as a “d times 1” vector containing weight ‘wj’ in position ‘j’.

– We use ‘y’ as an “n times 1” vector containing target ‘yi’ in position ‘i’.

– We use ‘xi’ as a “d times 1” vector containing features ‘j’ of example ‘i’.

• We’re now going to be careful to make sure these are column vectors.

– So ‘X’ is a matrix with xi
T in row ‘i’.



Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:

– Our prediction for example ‘i’ is given by the scalar wTxi.

– Our predictions for all ‘i’ (n times 1 vector) is the matrix-vector product Xw.



Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:

– Our prediction for example ‘i’ is given by the scalar wTxi.

– Our predictions for all ‘i’ (n times 1 vector) is the matrix-vector product Xw.

– Residual vector ‘r’ gives difference between predictions and yi (n times 1).

– Least squares can be written as the squared L2-norm of the residual.



Back to Deriving Least Squares for d > 2…

• We can write vector of predictions ො𝑦𝑖 as a matrix-vector product:

• And we can write linear least squares in matrix notation as:

• We’ll use this notation to derive d-dimensional least squares ‘w’.

– By setting the gradient 𝛻 𝑓 𝑤 equal to the zero vector and solving for ‘w’.



Digression: Matrix Algebra Review

• Quick review of linear algebra operations we’ll use:

– If ‘a’ and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:



Linear and Quadratic Gradients

• From these rules we have (see post-lecture slide for steps):

• How do we compute gradient?



Linear and Quadratic Gradients

• We’ve written as a d-dimensional quadratic:

• Gradient is given by:

• Using definitions of ‘A’ and ‘b’:



Normal Equations

• Set gradient equal to zero to find the “critical” points:

• We now move terms not involving ‘w’ to the other side:

• This is a set of ‘d’ linear equations called the normal equations.

– This a linear system like “Ax = b” from Math 152.

• You can use Gaussian elimination to solve for ‘w’.

– In Julia, the “\” command can be used to solve linear systems:



Incorrect Solutions to Least Squares Problem



Least Squares Cost

• Cost of solving “normal equations” XTXw = XTy?

• Forming XTy vector costs O(nd).

– It has ‘d’ elements, and each is an inner product between ‘n’ numbers.

• Forming matrix XTX costs O(nd2).

– It has d2 elements, and each is an inner product between ‘n’ numbers.

• Solving a d x d system of equations costs O(d3).

– Cost of Gaussian elimination on a d-variable linear system.

– Other standard methods have the same cost.

• Overall cost is O(nd2 + d3).

– Which term dominates depends on ‘n’ and ‘d’.



Least Squares Issues

• Issues with least squares model:

– Solution might not be unique.

– It is sensitive to outliers.

– It always uses all features.

– Data can might so big we can’t store XTX.

• Or you can’t afford the O(nd2 + d3) cost.

– It might predict outside range of yi values.

– It assumes a linear relationship between xi and yi.



Non-Uniqueness of Least Squares Solution

• Why isn’t solution unique?
– Imagine having two features that are identical for all examples.

– I can increase weight on one feature, and decrease it on the other,
without changing predictions.

– Thus, if (w1,w2) is a solution then (w1+w2, 0) is another solution.

– This is special case of features being “collinear”:
• One feature is a linear function of the others.

• But, any ‘w’ where ∇ f(w) = 0 is a global minimizer of ‘f’.
– This is due to convexity of ‘f’, which we’ll discuss later.



(pause)



Motivation: Non-Linear Progressions in Athletics

• Are top athletes going faster, higher, and farther?

http://www.at-a-lanta.nl/weia/Progressie.html
https://en.wikipedia.org/wiki/Usain_Bolt
http://www.britannica.com/biography/Florence-Griffith-Joyner



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

http://www.at-a-lanta.nl/weia/Progressie.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

http://www.at-a-lanta.nl/weia/Progressie.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

• CPSC 540.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression:
– Find ‘k’ nearest neighbours of xi.

– Return the mean of the corresponding yi.

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.
– Close points ‘j’ get more “weight” wij.

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel-regression-with-variable-window-width/content/ksr_vw.m



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

– Ensemble methods:

• Can improve performance by averaging across regression models.



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression.

• Applications:
– Regression forests for fluid simulation:

• https://www.youtube.com/watch?v=kGB7Wd9CudA

– KNN for image completion:
• http://graphics.cs.cmu.edu/projects/scene-completion
• Combined with “graph cuts” and “Poisson blending”.

– KNN regression for “voice photoshop”:
• https://www.youtube.com/watch?v=I3l4XLZ59iw
• Combined with “dynamic time warping” and “Poisson blending”.

• But we’ll focus on linear models with non-linear transforms.
– These are the building blocks for more advanced methods.

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm

https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://www.youtube.com/watch?v=I3l4XLZ59iw


Why don’t we have a y-intercept?

– Linear model is ො𝑦i = wxi instead of ො𝑦i = wxi + w0 with y-intercept w0.

– Without an intercept, if xi = 0 then we must predict ො𝑦i = 0.



Why don’t we have a y-intercept?

– Linear model is ො𝑦i = wxi instead of ො𝑦i = wxi + w0 with y-intercept w0.

– Without an intercept, if xi = 0 then we must predict ො𝑦i = 0.



Adding a Bias Variable

• Simple trick to add a y-intercept (“bias”) variable:
– Make a new matrix “Z” with an extra feature that is always “1”.

• Now use “Z” as your features in linear regression.
– We’ll use ‘v’ instead of ‘w’ as regression weights when we use features ‘Z’.

• So we can have a non-zero y-intercept by changing features.
– This means we can ignore the y-intercept in our derivations, which is cleaner.



Motivation: Limitations of Linear Models

• On many datasets, yi is not a linear function of xi.

• Can we use least square to fit non-linear models?



Non-Linear Feature Transforms

• Can we use linear least squares to fit a quadratic model?

• You can do this by changing the features (change of basis):

• Fit new parameters ‘v’ under “change of basis”: solve ZTZv = ZTy.

• It’s a linear function of w, but a quadratic function of xi.



Non-Linear Feature Transforms



General Polynomial Features (d=1)

• We can have a polynomial of degree ‘p’ by using these features:

• There are polynomial basis functions that are numerically nicer:
– E.g., Lagrange polynomials (see CPSC 303).



Summary

• Matrix notation for expressing least squares problem.

• Normal equations: solution of least squares as a linear system.

– Solve (XTX)w = (XTy).

• Solution might not be unique because of collinearity.

– But any solution is optimal because of “convexity”.

• Tree/probabilistic/non-parametric/ensemble regression methods.

• Non-linear transforms:

– Allow us to model non-linear relationships with linear models.

• Next time: how to do least squares with a million features.



Linear Least Squares: Expansion Step



Vector View of Least Squares

• We showed that least squares minimizes:

• The ½ and the squaring don’t change solution, so equivalent to:

• From this viewpoint, least square minimizes Euclidean distance 
between vector of labels ‘y’ and vector of predictions Xw.



Bonus Slide: Householder(-ish) Notation

• Househoulder notation: set of (fairly-logical) conventions for math.



Bonus Slide: Householder(-ish) Notation

• Househoulder notation: set of (fairly-logical) conventions for math:



When does least squares have a unique solution?

• We said that least squares solution is not unique if we have repeated 
columns.

• But there are other ways it could be non-unique:
– One column is a scaled version of another column.

– One column could be the sum of 2 other columns.

– One column could be three times one column minus four times another.

• Least squares solution is unique if and only if all columns of X are 
“linearly independent”.
– No column can be written as a “linear combination” of the others.

– Many equivalent conditions (see Strang’s linear algebra book):
• X has “full column rank”, XTX is invertible, XTX has non-zero eigenvalues, det(XTX) > 0.

– Note that we cannot have independent columns if d > n.


