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Last Time: Linear Regression

We discussed linear models:
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— http://setosa.io/ev/ordinary-least-squares-regression
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

— We use ‘w’ as a “d times 1” vector containing weight ‘w;" in position ‘J'.

— We use ‘y’ as an “n times 1” vector containing target ‘y.” in position ‘i’.

— We use ‘x.” as a “d times 1” vector containing features ‘j’ of example “".

* We're now going to be careful to make sure these are column vectors.

— So ‘X’ is a matrix with x." in row ‘V".
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:
— Our prediction for example ‘i’ is given by the scalar w'x..
— Our predictions for all i’ (n times 1 vector) is the matrix-vector product Xw.
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:
— Our prediction for example ‘i’ is given by the scalar w'x..
— Our predictions for all i’ (n times 1 vector) is the matrix-vector product Xw.
— Residual vector ‘r’ gives difference between predictions and y, (n times 1).
— Least squares can be written as the squared L2-norm of the residual.
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Back to Deriving Least Squares ford > 2...
* We can write vector of predictions y, as a matrix-vector product:
y =X = [:;i)
 And we can write linear least squares in matrix notation as:
| N
3?( y)

 We’ll use this notation to derive d-dimensional least squares ‘w’.

— By setting the gradient V f(w) equal to the zero vector and solving for ‘w’.



Digression: Matrix Algebra Review

* Quick review of linear algebra operations we’ll use:

— If ‘@’ and ‘b’ be vectors, and ‘A" and ‘B’ be matrices then:
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Linear and Quadratic Gradients

* From these rules we have (see post-lecture slide for steps):
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Linear and Quadratic Gradients

* We've written as a d dimensional quadratic:
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Normal Equations

* Set gradient equal to zero to find the “critical” points:
X ’)(w - X y = O

 We now move terms not involving ‘w’ to the other side:
1 VA
X Yo =X Y/

* This is a set of ‘d’ linear equations called the normal equations.
— This a linear system like “Ax = b” from Math 152.

* You can use Gaussian elimination to solve for ‘w’.

— In Julia, the “\” command can be used to solve linear systems:
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Incorrect Solutions to Least Squares Problem
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Least Squares Cost

Cost of solving “normal equations” X™Xw = X'y?

Forming X'y vector costs O(nd).

— It has ‘d’ elements, and each is an inner product between ‘n” numbers.
Forming matrix X'X costs O(nd?).

— It has d? elements, and each is an inner product between ‘n’ numbers.

Solving a d x d system of equations costs O(d?3).
— Cost of Gaussian elimination on a d-variable linear system.
— Other standard methods have the same cost.

Overall cost is O(nd? + d?3).

— Which term dominates depends on ‘n” and ‘d’.



Least Squares Issues

* |ssues with least squares model: |
o . X s nx/
— Solution might not be unique. .
: . : ' X
— It is sensitive to outliers. s K15 dxn
" .
— It always uses all features. and XX s dxd

— Data can might so big we can’t store X'X.
* Or you can’t afford the O(nd? + d3) cost.

— It might predict outside range of y, values.
— It assumes a linear relationship between x, and y..



Non-Uniqueness of Least Squares Solution

 Why isn’t solution unique?
— Imagine having two features that are identical for all examples.

— | can increase weight on one feature, and decrease it on the other,

without changing predictions. A _
M‘ - Wl X,/ .+W.Z\)i’ﬁ£ :(W,“WZ)X,, -—" 0)(,‘,
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ry
— Thus, if (w,,w,) is a solution then (w,+w,, 0) is another solution.

— This is special case of features being “collinear”:
* One feature is a linear function of the others.

* But, any ‘W’ where V f(w) = 0 is a global minimizer of f’.
— This is due to convexity of ‘', which we’ll discuss later.
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Motivation: Non-Linear Progressions in Athletics

* Are top athletes going fast
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:



Adapting Counting/Distance-Based Methods

We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y,) with Gaussian or other model.
* CPSC 540.




Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y,) with Gaussian or other model.

— Non-parametric models:
* KNN regression:

— Find ‘K’ nearest neighbours of X.
— Return the mean of the corresponding y..
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y,) with Gaussian or other model.
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y,) with Gaussian or other model.

— Non-parametric models:
* KNN regression.

* Could be weighted by distance. 1
* ‘Nadaraya-Waston’: weight all y;, by distance to x.. */
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Adapting Counting/| &
* We can adapt our classificatig :
— Regression tree: tree with mea = -
— Probabilistic models: fit p(x; | y S
— Non-parametric models: <

* KNN regression. |
* Could be weighted by distance. 7/

* ‘Nadaraya-Waston’: weight all y,

X

* ‘Locally linear regression’: for each x,, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)



Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y,) with Gaussian or other model.

— Non-parametric models:
KNN regression.

Could be weighted by distance.

‘Nadaraya-Waston’: weight all y; by distance to x..

‘Locally linear regression’: for each x,, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

— Ensemble methods:

e Can improve performance by averaging across regression models.



Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression.

* Applications:
— Regression forests for fluid simulation:
e https://www.youtube.com/watch?v=kGB7Wd9CudA
— KNN for image completion:
* http://graphics.cs.cmu.edu/projects/scene-completion
* Combined with “graph cuts” and “Poisson blending”.

— KNN regression for “voice photoshop”:
* https://www.youtube.com/watch?v=1314XLZ59iw
 Combined with “dynamic time warping” and “Poisson blending”.

e But we’ll focus on linear models with non-linear transformes.
— These are the building blocks for more advanced methods.


https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://www.youtube.com/watch?v=I3l4XLZ59iw

Why don’t we have a y-intercept?

— Linear model is J, = wx; instead of y. = wx, + w, with y-intercept w,,.

— Without an intercept, if x, = 0 then we must predict ), = 0.
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Why don’t we have a y-intercept?

— Linear model is J, = wx; instead of y. = wx, + w, with y-intercept w,,.

— Without an intercept, if x, = 0 then we must predict ), = 0.
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Adding a Bias Variable

e Simple trick to add a y-intercept (“bias”) variable:
— Make a new matrix “Z” with an extra feature that is always “1”.

c(§] =L
am/sl

* Now use “Z” as your features in linear regressmn
— We'll use ‘v’ instead of ‘W’ as regression weights when we use features ‘7.

y.:\/z,, 12*W0+lel
SR A i l
W, J w, Xijl
* So we can have a non-zero y-intercept by changing features.
— This means we can ignore the y-intercept in our derivations, which is cleaner.



Motivation: Limitations of Linear Models

* On many datasets, y, is not a linear function of x..
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* Can we use least square to fit non-linear models?



Non-Linear Feature Transforms

Can we use linear least squares to fit a quadratic model?
N
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You can do this by changing the features (change of basis):
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It’s a linear function of w, but a quadratic function of x..
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Non-Linear Feature Transforms
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General Polynomial Features (d=1)

 We can have a polynomial of degree ‘p’ by using these features:

- p -
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 There are polynomial basis functions that are numerically nicer:
— E.g., Lagrange polynomials (see CPSC 303).



Summary

Matrix notation for expressing least squares problem.

Normal equations: solution of least squares as a linear system.
— Solve (X™X)w = (XTy).

Solution might not be unique because of collinearity.

— But any solution is optimal because of “convexity”.

Tree/probabilistic/non-parametric/ensemble regression methods.

Non-linear transforms:

— Allow us to model non-linear relationships with linear models.

Next time: how to do least squares with a million features.



Linear Least Squares: Expansion Step
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Vector View of Least Squares
* We showed that least squares minimizes:
Flod= $ 1K - yIP
 The %2 and the squaring don’t change solution, so equivalent to:

b lw) = NXW‘“yH

* From this viewpoint, least square minimizes Euclidean distance
between vector of labels ‘y* and vector of predictions Xw.



Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math.
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Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math:
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When does least squares have a unique solution?

We said that least squares solution is not unique if we have repeated
columns.

But there are other ways it could be non-unique:

— One column is a scaled version of another column.

— One column could be the sum of 2 other columns.

— One column could be three times one column minus four times another.

Least squares solution is unique if and only if all columns of X are
“linearly independent”.
— No column can be written as a “linear combination” of the others.

— Many equivalent conditions (see Strang’s linear algebra book):
* X has “full column rank”, X™X is invertible, X"X has non-zero eigenvalues, det(X"X) > 0.

— Note that we cannot have independent columns if d > n.



