CPSC 340:
Machine Learning and Data Mining



Admin

* Assignment 2:
— 1 late day to hand in tonight, 2 for Wednesday.

* Assignment 3 is up:
— Start early, this is usually the longest assighnment.
— Has details about the project.
— Only 1 late day allowed.

 We're going to start using calculus and linear algebra a lot.
— You should start reviewing these ASAP if you are rusty.
— A review of relevant calculus concepts is here.
— A review of relevant linear algebra concepts is here.


https://www.cs.ubc.ca/~schmidtm/Courses/Notes/calculus.pdf
https://www.cs.ubc.ca/~schmidtm/Documents/2009_Notes_LinearAlgebra.pdf

Supervised Learning Round 2: Regression

 We're going to revisit supervised learning:
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* Previously, we considered classification:

— We assumed y. was discrete: y, = ‘spam’ or y, = ‘not spam’.
* Now we’re going to consider regression:

— We allow y, to be numerical: y, = 10.34cm.



Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:
— Does number of lung cancer deaths change with number of cigarettes?
— Does number of skin cancer deaths change with latitude?
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Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:
— Do people in big cities walk faster?

— |s the universe expanding or shrinking or staying the same size?
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Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:

— Does number of gun deaths change with gun ownership?

— Does number violent crimes change with violent video games?

Gun ownership vs. gun deaths, by state
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Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:
— Does higher gender equality index lead to more women STEM grads?

* Not that we’re doing supervised learning:

— Trying to predict value of 1 variable (the ‘y. values).

(instead of measuring correlation between 2).

e Supervised learning does not give causality:
— OK: “Higher index is correlated with lower grad %”.
— OK: “Higher index helps predict lower grad %”.

— BAD: “Higher index leads to lower grads %”.
* People/media get these confused all the time, be careful!
* There are lots of potential reasons for this correlation.
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Handling Numerical Labels

* One way to handle numerical y.: discretize.
— E.g., for ‘age’ could we use {‘age < 20’, 20 < age < 30’, ‘age > 30'}.
— Now we can apply methods for classification to do regression.
— But coarse discretization loses resolution.
— And fine discretization requires lots of data.

* There exist regression versions of classification methods:
— Regression trees, probabilistic models, non-parametric models.

* Today: one of oldest, but still most popular/important methods:
— Linear regression based on squared error.
— Interpretable and the building block for more-complex methods.



Linear Regression in 1 Dimension

Assume we only have 1 feature (d = 1):
— E.g., x. is number of cigarettes and y, is number of lung cancer deaths.

Linear regression makes predictions ¥ using a linear function of x::
N
>/,' = WX,

The parameter ‘w’ is the weight or regression coefficient of x..
— We're temporarily ignoring the y-intercept.
As x. changes, slope ‘w’ affects the rate that y. increases/decreases:

— Positive ‘w’: J. increase as x; increases.
— Negative ‘w’: J. decreases as x; increases.



Linear Regression in 1 Dimension
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Aside: terminology woes

e Different fields use different terminology and symbols.
— Data points = objects = examples = rows = observations.

— Inputs = predictors = features = explanatory variables= regressors =
independent variables = covariates = columns.

— Outputs = outcomes = targets = response variables = dependent variables
(also called a “label” if it’s categorical).

— Regression coefficients = weights = parameters = betas.
* With linear regression, the symbols are inconsistent too:
— In ML, the data is X and y, and the weights are w.

— In statistics, the data is X and y, and the weights are (.
— In optimization, the data is A and b, and the weights are x.



Least Squares Objective

* Our linear model is given by:
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* So we make predictions for a new example by using:
N
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e But we can’t use the same error as before:

— It is unlikely to find a line where y, = yi exactly for many points.

* Due to noise, relationship not being quite linear or just floating-point issues.

— “Best” model may have |y, — v, | is small but not exactly O.



Least Squares Objective

* Instead of “exact y.”, we evaluate “size” of the error in prediction.
* Classic way is setting slope ‘W’ to minimize sum of squared errors:
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* There are some justifications for this choice. valne For exanle
— A probabilistic interpretation is coming later in the course.

* But usually, itis done because it is easy to minimize.



Least Squares Objective

e Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Least Squares Objective

e Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Minimizing a Differential Function

 Math 101 approach to minimizing a differentiable function f':
1. Take the derivative of .
2. Find points ‘w’ where the derivative f’'(w) is equal to O.

3. Choose the smallest one (and check that f"’(w) is positive).
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Digression: Multiplying by a Positive Constant

Note that this problem:

P =2 Gox =)

Has the same set of minimizers as this problem:
N
P=15 (wx=y)°
24 i //
And these also have the same minimizers:
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| can multiply ‘f” by any positive constant and not change solution.
— Derivative will still be zero at the same locations.
— We'll use this trick a lot!

(Quora trolling on ethics of this)



https://www.reddit.com/r/AIethics/comments/4qvi4m/is_it_ethical_to_remove_constants_from_your_loss/

Finding Least Squares Solution

. Finding ‘w’ that minimizes sum of squared errors:
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Finding Least Squares Solution

* Finding ‘W’ that minimizes sum of squared errors:
N
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* Let’s check that this is a minimizer by checking second derivative:
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— Since (anything)? is non-negative and (anything non-zero)? > 0,
if we have one non-zero feature then f”’(w) > 0 and this is a minimizer.



Least Squares Objective/Solution (Another View)

* Least squares minimizes a quadratic that is a sum of quadratics:
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Motivation: Combining Explanatory Variables

Smoking is not the only contributor to lung cancer.
— For example, there environmental factors like exposure to asbestos.

How can we model the combined effect of smoking and asbestos?
A simple way is with a 2-dimensional linear function:
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Least Squares in 2-Dimensions

* Linear model:
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Least Squares in 2-Dimensions

* Linear model:

A
Yi= WX T WaXig
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Different Notations for Least Squares

e |f we have ‘d’ fe;\\tures, the d-dimensional linear model is:
Y. = WXy P wyxa P wy Xy T F g xig

— In words, our model is that the output is a weighted sum of the inputs.

e We can re-write this in summation notation:

d
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e We can also re-write this in vector notation:
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Notation Alert (again)

* In this course, all vectors are assumed to be column-vectors:
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* So rows of X’ are actually transpose of column-vector x::
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Least Squares in d-Dimensions
 The linear least squares model in d-dimensions minimizes:

F=3 2 (W)

\

o P,ecl)cf[on i ! 6rmr‘ (s 57/i (1 the
avv \/I:C"r:;v 'llﬂh?r Pf(?c!wof Sum OF §(7IM0:/€J Jym{rn[ﬂ
—_— O'F "W and /x;\ Leflpeeh "‘fruf ' y} anJ
(l’mew— (Ow’o)ma*}dh of ‘P@a%lﬁ/?}) OUr h/){edic ’/('04“ W_,X,'

* Dates back to 1801: Gauss used it to predict location of Ceres.

e How do we find the best vector ‘W’ in ‘d’ dimensions?
— Can we set the “partial derivative” of each variable to 07



Partial Derivatives
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Least Squares Partial Derivatives (1 Example)

 The linear least squares model in d-dimensions for 1 example:
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 Computing the partial derivative for variable 1
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Least Squares Partial Derivatives (‘n” Examples)

* Linear least squares partial derivative for variable 1 on example ‘i’:

DVV\.F( RCON w) = (wis = il
* For a generic variable ‘j” we would have:
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J
 And if f" is summed over all ‘n’ examples we would have:
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. Unfortunately, the partial derivative for W, depends on all {w,, w,,..., w,}
— | can’t just “set equal to 0 and solve for w;".



Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘w” where the gradient vector equals the zero vector.

* Gradient is vector with partial derivative ‘j’ in position j’:
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Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘w” where the gradient vector equals the zero vector.

* Gradient is vector with partial derivative ‘j’ in position j’:
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Summary

Regression considers the case of a numerical y..

Least squares is a classic method for fitting linear models.
— With 1 feature, it has a simple closed-form solution.
— Can be generalized to ‘d’ features.

Gradient is vector containing partial derivatives of all variables.

Next time:
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