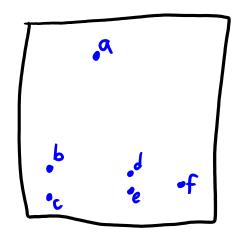
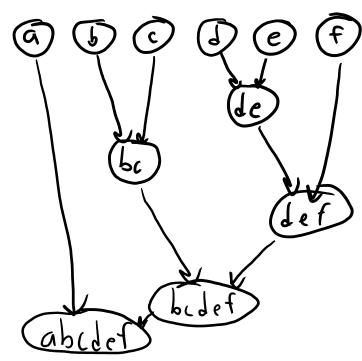
CPSC 340: Machine Learning and Data Mining

Outlier Detection Fall 2019

Last Time: Hierarchical Clustering

- We discussed hierarchical clustering:
 - Performs clustering at multiple scales.
 - Output is usually a tree diagram ("dendrogram").
 - Reveals much more structure in data.
 - Usually non-parametric:
 - At finest scale, every point is its own clusters.
- We discussed some application areas:
 - Animals (phylogenetics).
 - Languages.
 - Stories.
 - Fashion.

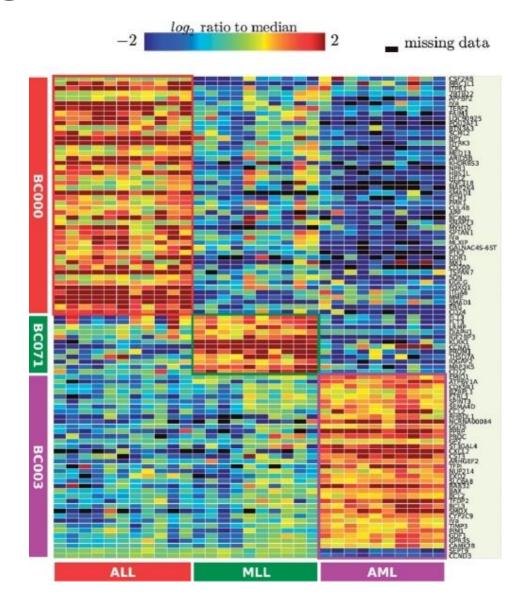




Biclustering

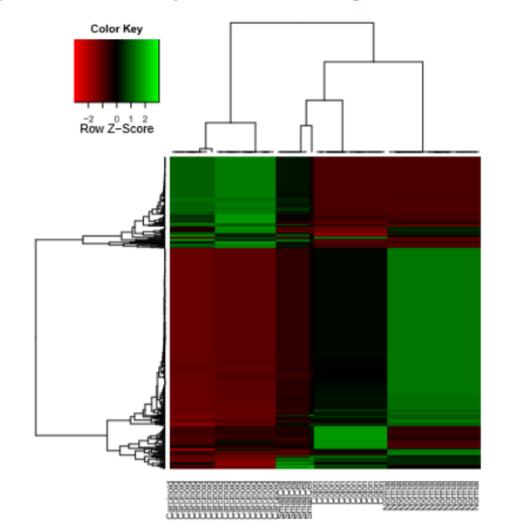
Biclustering:

- Cluster the training examples and features.
- Also gives feature relationship information.
- Simplest and most popular method:
 - Run clustering method on 'X' (examples).
 - Run clustering method on ' X^{T} ' (features).
- Often plotted with 'X' as a heatmap.
 - Where rows/columns arranged by clusters.
 - Helps you 'see' why things are clustered.



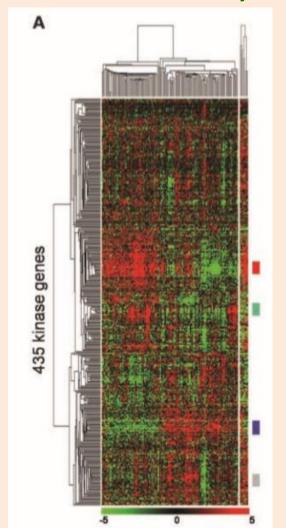
Biclustering

- Visualization: hierarchical biclustering + heatmap + dendrograms.
 - Popular in biology/medicine.



Application: Medical data

- Hierarchical clustering is very common in medical data analysis.
 - Biclustering different samples of breast cancer:



Other Clustering Methods

Mixture models:

Probabilistic clustering.

Mean-shift clustering:

- Finds local "modes" in density of points.
- Alternative approach to vector quantization.

Bayesian clustering:

- A variant on ensemble methods.
- Averages over models/clusterings,
 weighted by "prior" belief in the model/clustering.

Graph-Based Clustering

Spectral clustering and graph-based clustering:

http://ascr-discovery.science.doe.gov/2013/09/sifting-genomes/

https://www.hackdiary.com/2012/04/05/extracting-a-social-graph-from-wikipedia-people-pages/

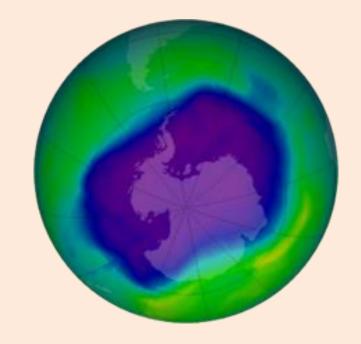
 Clustering of data described by graphs. HS friends Musicians University Superheroes Finding genes useful for biofnel Friend graph https://griffsgraphs.wordpress.com/tag/clustering/

Wikipedia links

(pause)

Motivating Example: Finding Holes in Ozone Layer

• The huge Antarctic ozone hole was "discovered" in 1985.

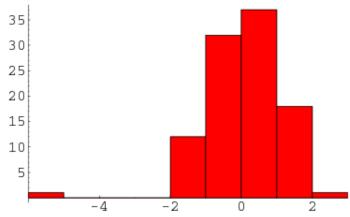


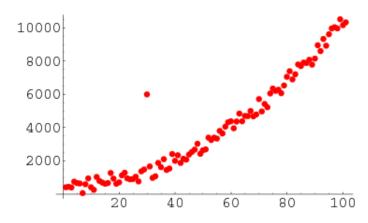
- It had been in satellite data since 1976:
 - But it was flagged and filtered out by a quality-control algorithm.

Outlier Detection

Outlier detection:

- Find observations that are "unusually different" from the others.
- Also known as "anomaly detection".
- May want to remove outliers, or be interested in the outliers themselves (security).





- Some sources of outliers:
 - Measurement errors.
 - Data entry errors.
 - Contamination of data from different sources.
 - Rare events.

Applications of Outlier Detection

- Data cleaning.
- Security and fault detection (network intrusion, DOS attacks).
- Fraud detection (credit cards, stocks, voting irregularities).

- Detecting natural disasters (underwater earthquakes).
- Astronomy (find new classes of stars/planets).
- Genetics (identifying individuals with new/ancient genes).

Classes of Methods for Outlier Detection

- 1. Model-based methods.
- 2. Graphical approaches.
- 3. Cluster-based methods.
- 4. Distance-based methods.
- 5. Supervised-learning methods.

• Warning: this is the topic with the most ambiguous "solutions".

But first...

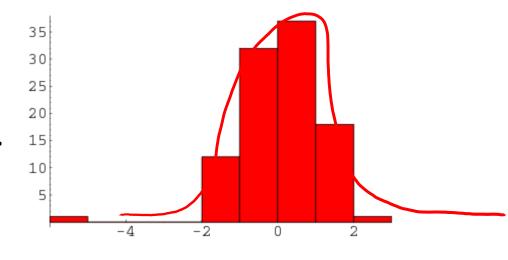
Usually it's good to do some basic sanity checking...

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	Peanuts	Sick?
0	0.7	0	0.3	0	0	0	1
0.3	0.7	0	0.6	-1	3	3	1
0	0	0	"sick"	0	1	1	0
0.3	0.7	1.2	0	0.10	0	0	2
900	0	1.2	0.3	0.10	0	0	1

- Would any values in the column cause a Python/Julia "type" error?
- What is the range of numerical features?
- What are the unique entries for a categorical feature?
- Does it look like parts of the table are duplicated?
- These types of simple errors are VERY common in real data.

Model-Based Outlier Detection

- Model-based outlier detection:
 - 1. Fit a probabilistic model.
 - 2. Outliers are examples with low probability.



Example:

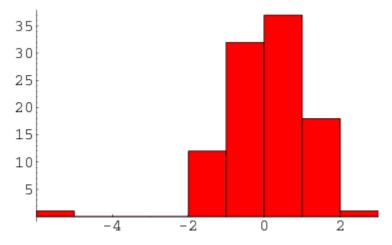
- Assume data follows normal distribution.
- The z-score for 1D data is given by:

$$Z_{i} = \frac{X_{i} - u}{\sigma}$$
 where $u = \frac{1}{n} \stackrel{\wedge}{\underset{i=1}{\stackrel{\wedge}{\sum}}} x_{i}$ and $\sigma = \sqrt{\frac{1}{n} \stackrel{\wedge}{\underset{i=1}{\stackrel{\wedge}{\sum}}} (x_{i} - u)^{2}}$

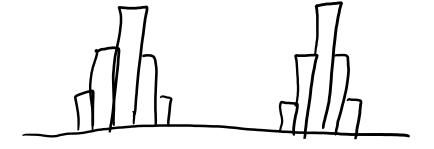
- "Number of standard deviations away from the mean".
- Say "outlier" if |z| > 4, or some other threshold.

Problems with Z-Score

Unfortunately, the mean and variance are sensitive to outliers.



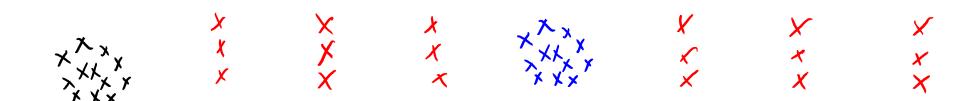
- Possible fixes: use quantiles, or sequentially remove worse outlier.
- The z-score also assumes that data is "uni-modal".
 - Data is concentrated around the mean.



• Is the red point an outlier?

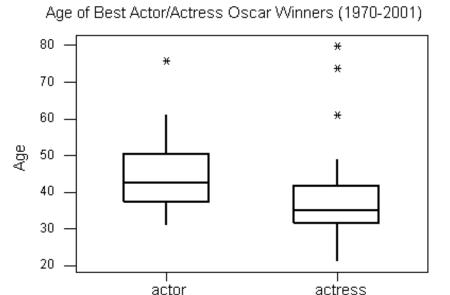
- Red point has the lowest z-score.
 - In the first case it was a "global" outlier.
 - In this second case it's a "local" outlier:
 - Within normal data range, but far from other points.
- It's hard to precisely define "outliers".

- Red point has the lowest z-score.
 - In the first case it was a "global" outlier.
 - In this second case it's a "local" outlier:
 - Within normal data range, but far from other points.
- It's hard to precisely define "outliers".
 - Can we have outlier groups?



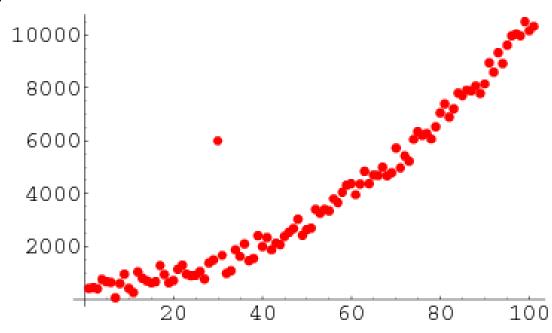
- Red point has the lowest z-score.
 - In the first case it was a "global" outlier.
 - In this second case it's a "local" outlier:
 - Within normal data range, but far from other points.
- It's hard to precisely define "outliers".
 - Can we have outlier groups? What about repeating patterns?

- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier.
- Examples:
 - 1. Box plot:
 - Visualization of quantiles/outliers.
 - Only 1 variable at a time.

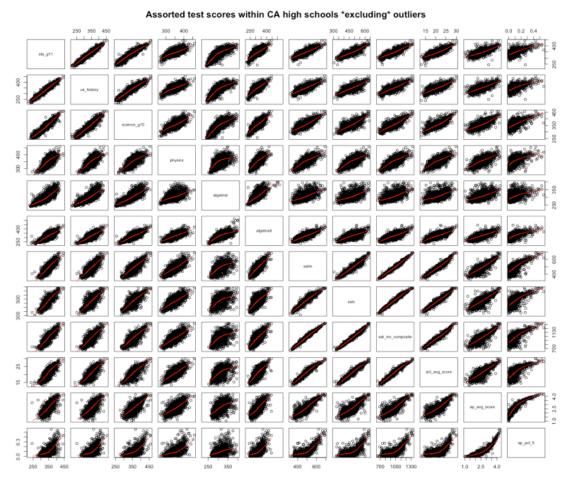


Side-By-Side (Comparative) Boxplots

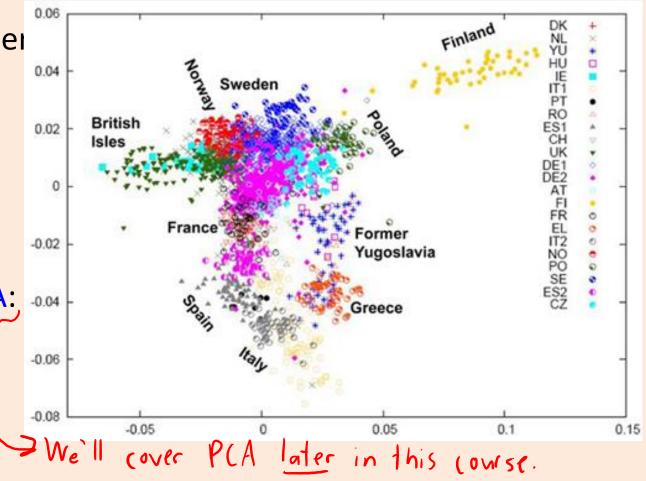
- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier.
- Examples:
 - Box plot.
 - 2. Scatterplot:
 - Can detect complex patterns.
 - Only 2 variables at a time.



- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier.
- Examples:
 - 1. Box plot.
 - 2. Scatterplot.
 - 3. Scatterplot array:
 - Look at all combinations of variables.
 - But laborious in high-dimensions.
 - Still only 2 variables at a time.

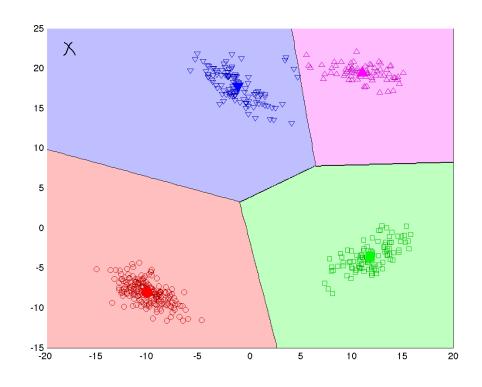


- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier
- Examples:
 - 1. Box plot.
 - 2. Scatterplot.
 - 3. Scatterplot array.
 - 4. Scatterplot of 2-dimensional PCA: 4.4
 - 'See' high-dimensional structure.
 - But loses information and sensitive to outliers.



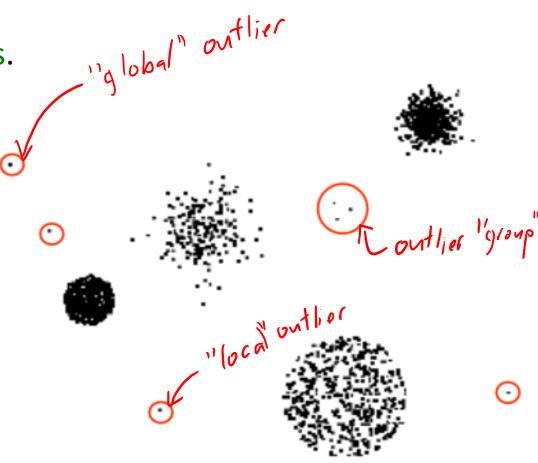
Cluster-Based Outlier Detection

- Detect outliers based on clustering:
 - 1. Cluster the data.
 - 2. Find points that don't belong to clusters.
- Examples:
 - 1. K-means:
 - Find points that are far away from any mean.
 - Find clusters with a small number of points.



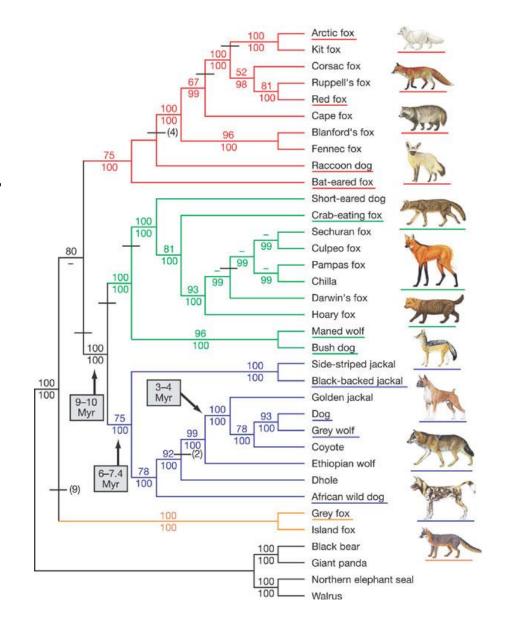
Cluster-Based Outlier Detection

- Detect outliers based on clustering:
 - 1. Cluster the data.
 - 2. Find points that don't belong to clusters.
- Examples:
 - 1. K-means.
 - 2. Density-based clustering:
 - Outliers are points not assigned to cluster.



Cluster-Based Outlier Detection

- Detect outliers based on clustering:
 - 1. Cluster the data.
 - 2. Find points that don't belong to clusters.
- Examples:
 - 1. K-means.
 - 2. Density-based clustering.
 - 3. Hierarchical clustering:
 - Outliers take longer to join other groups.
 - Also good for outlier groups.



Distance-Based Outlier Detection

- Most outlier detection approaches are based on distances.
- Can we skip the model/plot/clustering and just measure distances?
 - How many points lie in a radius 'epsilon'?
 - What is distance to kth nearest neighbour?
- UBC connection (first paper on this topic):

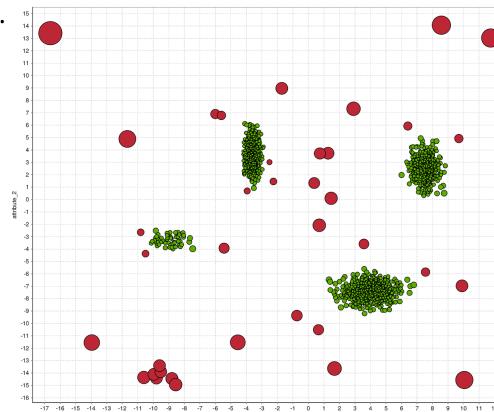
Algorithms for Mining Distance-Based Outliers in Large Datasets

Edwin M. Knorr and Raymond T. Ng
Department of Computer Science
University of British Columbia

Global Distance-Based Outlier Detection: KNN

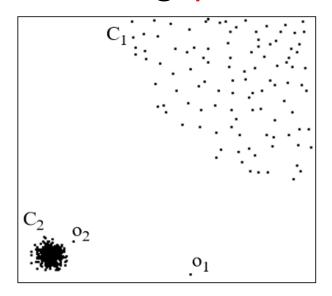
KNN outlier detection:

- For each point, compute the average distance to its KNN.
- Choose points with biggest values (or values above a threshold) as outliers.
 - "Outliers" are points that are far from their KNNs.
- Goldstein and Uchida [2016]:
 - Compared 19 methods on 10 datasets.
 - KNN best for finding "global" outliers.
 - "Local" outliers best found with local distance-based methods...



Local Distance-Based Outlier Detection

As with density-based clustering, problem with differing densities:

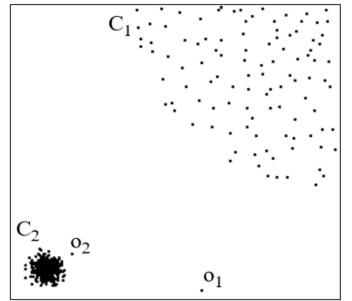


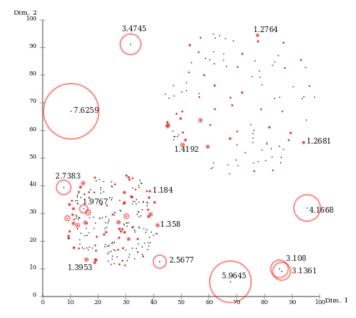
- Outlier o₂ has similar density as elements of cluster C₁.
- Basic idea behind local distance-based methods:
 - Outlier o₂ is "relatively" far compared to its neighbours.

Local Distance-Based Outlier Detection

"Outlierness" ratio of example 'i':

• If outlierness > 1, x_i is further away from neighbours than expected.



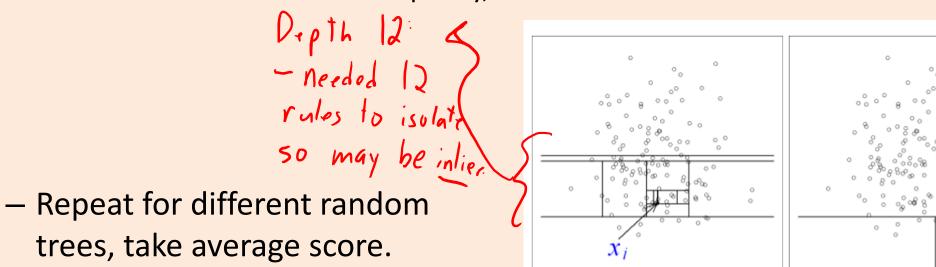


Isolation Forests

- Recent method based on random trees is isolation forests.
 - Grow a tree where each stump uses a random feature and random split.
 - Stop when each example is "isolated" (each leaf has one example).
 - The "isolation score" is the depth before example gets isolated.
 - Outliers should be isolated quickly, inliers should need lots of rules to isolate.

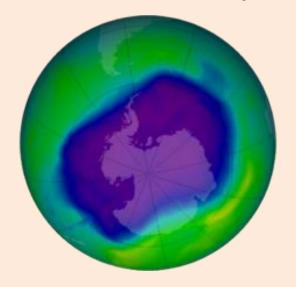
(a) Isolating x_i

(b) Isolating x_o



Problem with Unsupervised Outlier Detection

Why wasn't the hole in the ozone layer discovered for 9 years?



- Can be hard to decide when to report an outler:
 - If you report too many non-outliers, users will turn you off.
 - Most antivirus programs do not use ML methods (see "base-rate fallacy")

Supervised Outlier Detection

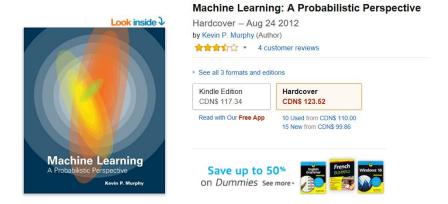
- Final approach to outlier detection is to use supervised learning:
 - $y_i = 1$ if x_i is an outlier.
 - $y_i = 0$ if x_i is a regular point.
- We can use our methods for supervised learning:
 - We can find very complicated outlier patterns.
 - Classic credit card fraud detection methods used decision trees.

- But it needs supervision:
 - We need to know what outliers look like.
 - We may not detect new "types" of outliers.

(pause)

Motivation: Product Recommendation

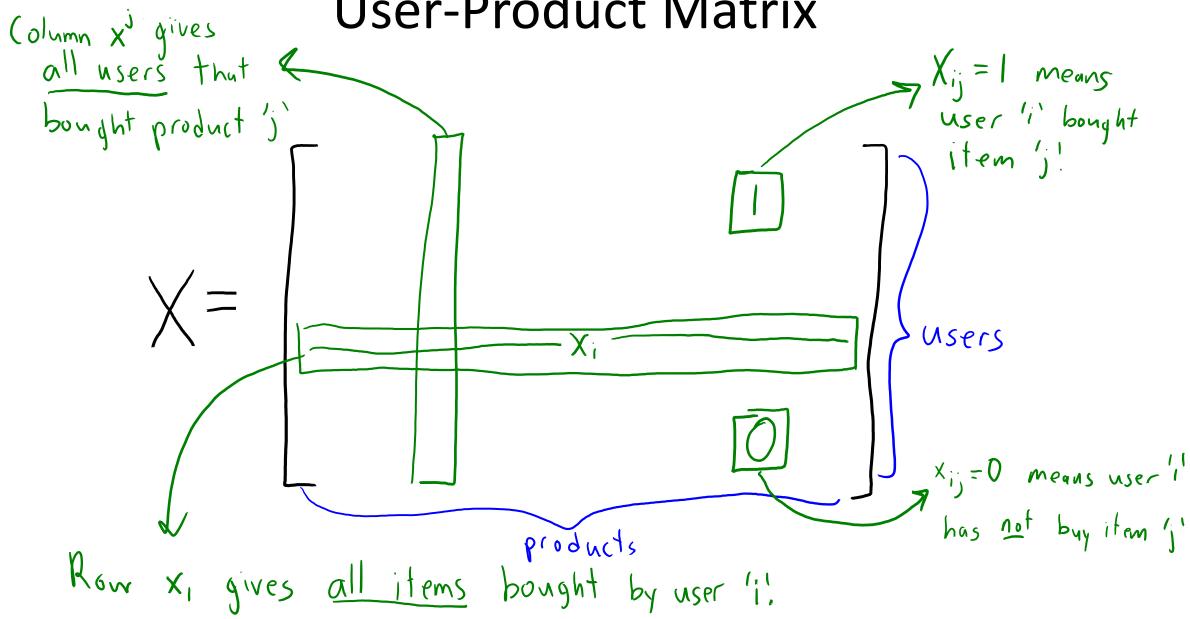
A customer comes to your website looking to buy at item:



You want to find similar items that they might also buy:

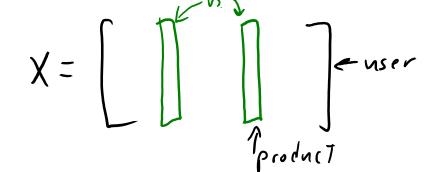


User-Product Matrix



Amazon Product Recommendation

Amazon product recommendation method:



- Return the KNNs across columns.
 - Find 'j' values minimizing $||x^i x^j||$.
 - Products that were bought by similar sets of users.
- But first divide each column by its norm, $x^i/||x^i||$.
 - This is called normalization.
 - Reflects whether product is bought by many people or few people.

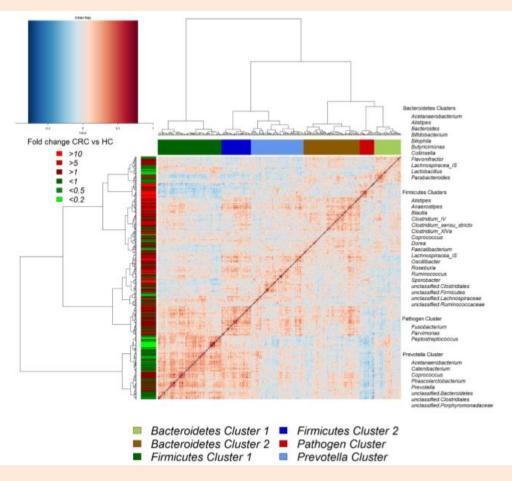
Summary

- Biclustering: clustering of the examples and the features.
- Outlier detection is task of finding unusually different example.
 - A concept that is very difficult to define.
 - Model-based find unlikely examples given a model of the data.
 - Graphical methods plot data and use human to find outliers.
 - Cluster-based methods check whether examples belong to clusters.
 - Distance-based outlier detection: measure (relative) distance to neighbours.
 - Supervised-learning for outlier detection: turns task into supervised learning.
- Amazon product recommendation:
 - Find similar items using (normalized) nearest neighbour search.
- Next time: detecting genes, viruses, plagiarism, and fingerprints.

Application: Medical data

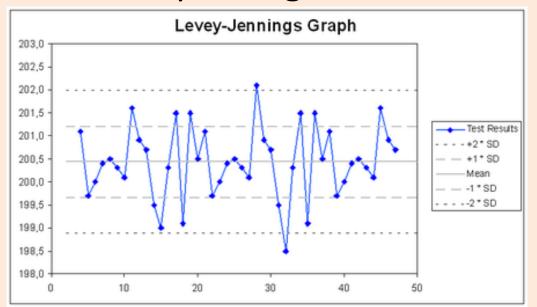
- Hierarchical clustering is very common in medical data analysis.
 - Clustering different samples of colorectoral cancer:

- This plot is different, it's not a biclustering:
 - The matrix is 'n' by 'n'.
 - Each matrix element gives correlation.
 - Clusters should look like "blocks" on diagonal.
 - Order of examples is reversed in columns.
 - This is why diagonal goes from bottom-to-top.
 - Please don't do this reversal, it's confusing to me.



"Quality Control": Outlier Detection in Time-Series

- A field primarily focusing on outlier detection is quality control.
- One of the main tools is plotting z-score thresholds over time:



- Usually don't do tests like " $|z_i| > 3$ ", since this happens normally.
- Instead, identify problems with tests like " $|z_i| > 2$ twice in a row".

Outlierness (Symbol Definition)

- Let $N_k(x_i)$ be the k-nearest neighbours of x_i .
- Let $D_k(x_i)$ be the average distance to k-nearest neighbours:

$$\int_{K} (x_{i}) = \frac{1}{k} \sum_{j \in N_{k}(x_{i})} ||x_{i} - x_{j}||$$

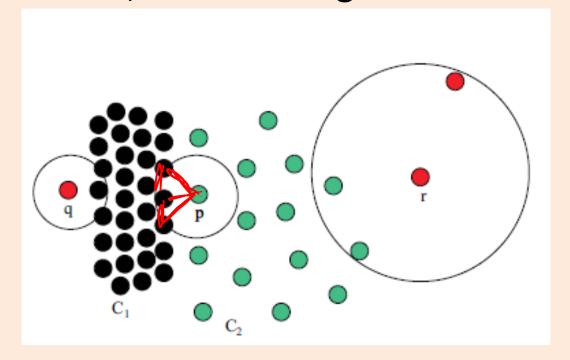
• Outlierness is ratio of $D_k(x_i)$ to average $D_k(x_i)$ for its neighbours 'j':

$$O_{k}(x_{i}) = \frac{O_{k}(x_{i})}{\frac{1}{k} \underbrace{\leq O_{k}(x_{i})}_{j \in N_{k}(x_{i})}}$$

• If outlierness > 1, x_i is further away from neighbours than expected.

Outlierness with Close Clusters

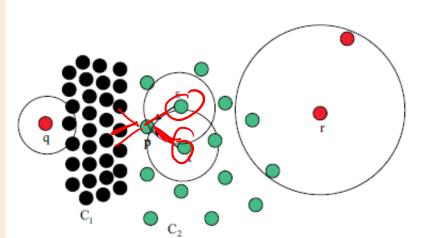
If clusters are close, outlierness gives unintuitive results:



- In this example, 'p' has higher outlierness than 'q' and 'r':
 - The green points are not part of the KNN list of 'p' for small 'k'.

Outlierness with Close Clusters

- 'Influenced outlierness' (INFLO) ratio:
 - Include in denominator the 'reverse' k-nearest neighbours:
 - Points that have 'p' in KNN list.
 - Adds 's' and 't' from bigger cluster that includes 'p':



- But still has problems:
 - Dealing with hierarchical clusters.
 - Yields many false positives if you have "global" outliers.
 - Goldstein and Uchida [2016] recommend just using KNN.

Training/Validation/Testing (Supervised)

- A typical supervised learning setup:
 - Train parameters on dataset D₁.
 - Validate hyper-parameters on dataset D₂.
 - Test error evaluated on dataset D₃.

What should we choose for D₁, D₂, and D₃?

Usual answer: should all be IID samples from data distribution D_s.

Training/Validation/Testing (Outlier Detection)

- A typical outlier detection setup:
 - Train parameters on dataset D₁ (there may be no "training" to do).
 - For example, find z-scores.
 - Validate hyper-parameters on dataset D₂ (for outlier detection).
 - For example, see which z-score threshold separates D₁ and D₂.
 - Test error evaluated on dataset D₃ (for outlier detection).
 - For example, check whether z-score recognizes D₃ as outliers.
- D₁ will still be samples from D_s (data distribution).
- D₂ could use IID samples from another distribution D_m.
 - D_m represents the "none" or "outlier" class.
 - Tune parameters so that D_m samples are outliers and D_s samples aren't.
 - Could just fit a binary classifier here.

Training/Validation/Testing (Outlier Detection)

- A typical outlier detection setup:
 - Train parameters on dataset D₁ (there may be no "training" to do).
 - For example, find z-scores.
 - Validate hyper-parameters on dataset D₂ (for outlier detection).
 - For example, see which z-score threshold separates D₁ and D₂.
 - Test error evaluated on dataset D₃ (for outlier detection).
 - For example, check whether z-score recognizes D₃ as outliers.
- D₁ will still be samples from D_s (data distribution).
- D₂ could use IID samples from another distribution D_m.
- D₃ could use IID samples from D_m.
 - How well do you do at recognizing "data" samples from "none" samples?

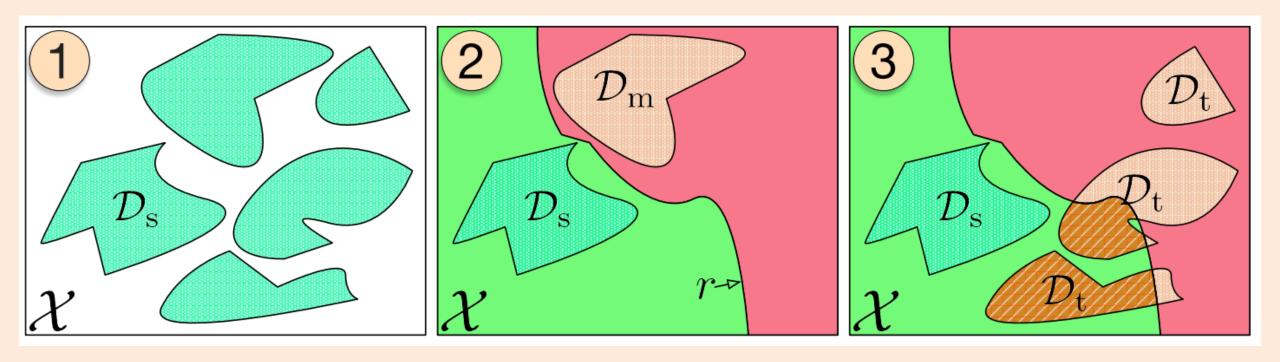
Training/Validation/Testing (Outlier Detection)

- Seems like a reasonable setup:
 - $-D_1$ will still be samples from D_s (data distribution).
 - $-D_2$ could use IID samples from another distribution D_m .
 - $-D_3$ could use IID samples from D_m .
- What can go wrong?
- You needed to pick a distribution D_m to represent "none".
 - But in the wild, your outliers might follow another "none" distribution.
 - This procedure can overfit to your D_m .
 - You can overestimate your ability to detect outliers.

OD-Test: a better way to evaluate outlier detections

- A reasonable setup:
 - $-D_1$ will still be samples from D_s (data distribution).
 - $-D_2$ could use IID samples from another distribution D_m .
 - D₃ could use IID samples from D_m.
 - $-D_3$ could use IID samples from yet-another distribution D_t .
- "How do you perform at detecting different types of outliers?"
 - Seems like a harder problem, but arguably closer to reality.

OD-Test: a better way to evaluate outlier detections



"How do you perform at detecting different types of outliers?"