Overview of Probability

Mark Schmidt September 12, 2017

Practical Application...

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

https://en.wikipedia.org/wiki/Dice_throw_%28review%29 http://www.dungeonsdragonscartoon.com/2011/11/cloak.html

Practical Application ...

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

• Probabilities defined on 'event space':

https://en.wikipedia.org/wiki/Dice_throw_%28review%29 http://www.dungeonsdragonscartoon.com/2011/11/cloak.html

Practical Application ...

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

• Probabilities defined on 'event space':

https://en.wikipedia.org/wiki/Dice_throw_%28review%29 http://www.dungeonsdragonscartoon.com/2011/11/cloak.html

Calculating Basic Probabilities

- Probability of event 'A' is ratio:
 - p(A) = Area(A)/TotalArea.
 - "Likelihood" that 'A' happens.
- Examples:
 - p(Survive) = 12/36 = 1/3.
 - p(Pizza) = 6/36 = 1/6.
 - p(-Survive) = 1 p(Survive) = 2/3.

D1\D2	1	2	3	4	5	6
1						
2			Cur			
3			Jui	VIVC		
4						
5			Cur	ind		
6		•	Sur	IVE	TZZC	1

Calculating Basic Probabilities

- Probability of event 'A' is ratio:
 - p(A) = Area(A)/TotalArea.
 - "Likelihood" that 'A' happens.
- Examples:
 - p(Survive) = 12/36 = 1/3.
 - p(Pizza) = 6/36 = 1/6.
 - p(-Survive) = 1 p(Survive) = 2/3.
 - $p(D_1 \text{ is even}) = 18/36 = \frac{1}{2}$.

D1\D2	1	2	3	4	5	6
1						
2			D ₁ is	even		
3						
4			D ₁ is	even		
5						
6			D ₁ is	even		

Random Variables and 'Sum to 1' Property

- Random variable: variable whose value depends on probability.
- Example: event (D₁ = x) depends on random variable D₁.
- Convention:

- We'll use p(x) to mean p(X = x), when random variable X is obvious.

- Sum of probabilities of random variable over entire domain is 1:
 - $-\sum_{x}p(x)=1.$

- E.g,
$$\sum_{i} p(D_1 = i) = 1/6 + 1/6 + ...$$

= 1.

Joint Probability

- Joint probability: probability that A and B happen, written 'p(A,B)'.
 Intersection of Area(A) and Area(B).
- Examples:
 - $p(D_1 = 1, Survive) = 0.$
 - p(Survive, Pizza) = 6/36 = 1/6.

D1\D2	1	2	3	4	5	6
1			D ₁	= 1		
2						
3						
4						
5			Cur	ind		
6		•	Sur	IVE	TZZC	

Joint Probability

- Joint probability: probability that A and B happen, written 'p(A,B)'.
 Intersection of Area(A) and Area(B).
- Examples:
 - $p(D_1 = 1, Survive) = 0.$
 - p(Survive, Pizza) = 6/36 = 1/6.
 - $p(D_1 \text{ even}, \text{Pizza}) = 3/36 = 1/12.$

D1\D2	1	2	3	4	5	6
1						
2			D ₁ is	even		
3						
4			D_1 is	even		
5);	
6			D_1 is	even ^r		1

• Note: order of A and B does not matter

Marginalization Rule

- Marginalization rule:
 - $-P(A) = \sum_{x} P(A, X = x).$
 - Summing joint over all values of one variable gives probability of the other.
 - Example: $P(Pizza) = P(Pizza, Survive) + P(Pizza, -Survive) = \frac{1}{6}$.

D1\D2	1	2	3	4	5	6
1						
2						
3			Jui	VIVC		
4						
5			Cur	ind		
6			Sur	INE		

- Applying rule twice:
$$\sum_{x} \sum_{y} p(Y = y, X = x) = 1$$
.

Conditional Probability

- Conditional probability:
 - probability that A will happen *if we know* that B happens.
 - "probability of A *restricted* to scenarios where B happens".
 - Written p(A|B), said "probability of A given B".
- Calculation:
 - Within area of B:
 - Compute Area(A)/TotalArea.
 - p(Pizza | Survive) =

D1\D2	1	2	3	4	5	6
1						
2			Cur			
3		-	-Sui	VIVE		
4						
5				ind		
6		,	Sur			2

Conditional Probability

- Conditional probability:
 - probability that A will happen *if we know* that B happens.
 - "probability of A *restricted* to scenarios where B happens".
 - Written p(A|B), said "probability of A given B".
- Calculation:
 - Within area of B:
 - Compute Area(A)/TotalArea.
 - p(Pizza | Survive) =

p(Pizza, Survive)/p(Survive) = 6/12 = ¹/₂.

- Higher than p(Pizza, Survive) = 6/36 = 1/6.
- More generally, p(A | B) = p(A,B)/p(B).

Geometrically: compute area of A on new space where B happened.

'Sum to 1' Properties and Bayes Rule.

• Conditional probability P(A | B) sums to one over all A:

$$-\sum_{x} P(x | B) = 1.$$

- P(Pizza | Survive) + P(– Pizza | Survive) = 1.
- P(Pizza | Survive) + P(Pizza | -Survive) \neq 1.
- Product rule: p(A,B) = p(A | B)p(B).
- Bayes Rule: p(A|B) = p(B|A)p(A) p(B)
 - Allows you to "reverse" the conditional probability.
- Example:
 - P(Pizza | Survive) = P(Survive | Pizza)P(Pizza)/P(Survive)
 - $= (1) * (1/6) / (1/3) = \frac{1}{2}.$

– <u>http://setosa.io/ev/conditional-probability</u>

Independence of Random Variables

- Events A and B are independent if p(A,B) = p(A)p(B).
 - Equivalently: p(A|B) = p(A).
 - "Knowing B happened tells you nothing about A".
 - We use the notation:

- Random variables are independent if p(x,y) = p(x)p(y) for all x and y.
 - Flipping two coins:

$$p(C_1 = \text{'heads'}, C_2 = \text{'heads'}) = p(C_1 = \text{'heads'})p(C_2 = \text{'heads'})$$

 $p(C_1 = \text{'tails'}, C_2 = \text{'heads'}) = p(C_1 = \text{'tails'})p(C_2 = \text{'heads'}).$

Conditional Independence

- A and B are conditionally independent given C if
 p(A, B | C) = p(A | C)p(B | C).
 - Equivalently: p(A | B, C) = p(A | C).
 - "Knowing C happened, also knowing B happened says nothing about A".
 - Example: p(Pizza | D₁, Survive) = p(Pizza | Survive).
 - Knowing you survived, dice 1 gives no information about chance of pizza.
 - We use the notation:

ALBIC

• Semantics of p(A, B | C, D):

– "probability of A and B happening, if we know that C and D happened".

Conditional Independence

- Example: food poisoning
 - If food was bad, each person independently gets sick with probability 50%
 - Unconditionally, me getting and and you getting sick are NOT independent
 - If I got sick, that makes me think the food was bad, which makes it more likely that you will get sick also. So knowing my situation influences my beliefs about yours.
 - But, conditioned on knowing the food was bad (or not bad), my sickness and your sickness are independent.

More Tutorial Material

- Wikipedia's conditional probability article is good:
 - <u>https://en.wikipedia.org/wiki/Conditional_probability</u>
- Visual/interactive introduction to probability:
 - <u>http://students.brown.edu/seeing-theory/basic-probability/index.html#first</u>
 - <u>http://students.brown.edu/seeing-theory/compound-probability/index.html#first</u>
- "Probability Primer" (advanced, PP 1.S-5.4 are most relevant):
 - <u>https://www.youtube.com/playlist?list=PL17567A1A3F5DB5E4</u>

Fun with Probabilities

- Probabilities can be used for a huge variety of problems:
 - Are you the hottest person in your group?
 - Poker Odds
 - Are shy students likely to be math students?
 - Battleship
 - Should you put all your eggs/tickets in one basket/lottery?
 - The Price is Right