CPSC 340 Assignment 4 (due November 17 ATE)

1 Multi-Class Logistic

The function example_multiClass loads a multi-class classification datasetwith y; € {1,2,3,4,5} and fits a
‘one-vs-all’ classification model using binary logistic regression, then reports the validation error and shows
a plot of the data/classifier. The performance on the validation set is ok, but could be much better. For
example, this classifier never even predicts that examples will be in class 1 (the green class).

1.1 Softmax Classification

Linear classifiers make their decisions by finding the class label ¢ maximizing the quantity wlz;, so we want
to train the model to make wg; x; larger than wgacl for all the classes ¢’ that are not y;. Here c is a possible
label and wes is column ¢’ of W. Similarly, y; is the training label, w,, is column y; of W, and in this setting
we are assuming a discrete label y; € {1,2,...,k}. Before we move on to implementing the softmax classifier
to fix the issues raised in the introduction, let’s do a simple example:

Consider the dataset below, which has 10 training examples, 2 features, and 3 class labels:
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Suppose that you want to classify the following test example:

$=1[1 1].
Suppose we fit a multi-class linear classifier using the softmax loss, and we obtain the following weight
matrix:
+2 +2 +3
=[5 1

1. Why are the weights of this model a 2 x 3 matrix?

2. Under this model, what class label would we assign to the test example? (Show your work.)



1.2 Softmax Loss

Using a one-vs-all classifier hurts performance because the classifiers are fit independently, so there is no
attempt to calibrate the columns of the matrix W. An alternative to this independent model is to use the
softmax loss probability,
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The loss function corresponding to the negative logarithm of the softmax probability for n training examples

is given by
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Derive the partial derivative of this loss function with respect to a particular element Wj.. Try to simplify
the derivative as much as possible (but you can express the result in summation notation).

Hint: for the gradient you can use z;; to refer to element j of example ¢. For the first term you can use
an ‘indicator’ function, I(y; = ¢), which is 1 when y; = ¢ and is 0 otherwise. Note that you can use the
definition of the softmax probability to simplify the derivative.

1.3 Softmax Classifier

Make a new function, softmaxzClassifier, which fits W using the softmax loss from the previous section instead
of fitting k independent classifiers. Hand in the code and report the validation error.

Hint: you will want to use the derivativeCheck option in findMin.jl to check that your gradient code is
correct. Also, note that findMin.jl expects that the parameter vector and gradient are column vectors. The
easiest way to work around these issues is to use the reshape command: call findMin.jl with a dk x 1 vector
w and at the start of your objective function reshape w to be a d x k matrix W, then compute the d x k
matrix of partial derivatives and finally reshape this to be a dk x 1 vector.

1.4 Cost of Multinomial Logistic Regression

Assuming that we have
e 7 training examples.
e d features.

e k classes.

t testing examples.

T iterations of gradient descent for training.
1. In O() notation, what is the cost of training the softmax classifier?

2. What is the cost of classifying the test examples?

2 MAP Estimation

In class, we considered MAP estimation in a regression model where we assumed that:



e The likelihood p(y;|7;,w) is a normal distribution with a mean of w”z; and a variance of 1.
e The prior for each variable j, p(w;), is a normal distribution with a mean of zero and a variance of
AL
Under these assumptions, we showed computing the MAP estimate with n training examples leads to the
standard L2-regularized least squares objective function:
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For each of the alternate assumptions below, write down the objective function that results (from minimizing

the negative log-posterior, and simplifying as much as possible):

1. We use a Laplace likelihood with a mean of w”z; and a scale of 1, and a normal prior with a variance
of A~ and a mean that is some “guess” w of the optimal parameter vector,
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2. We use a normal likelihood with a mean of w” z; but where each example i has its own positive variance
o2, and we use a zero-mean Laplace prior for each variable with a scale parameter of A\~1,
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The standard notation for this case is to use ¥ as a diagonal matrix with the o? values along the
diagonal.
3. We use a Poisson likelihood with a mean of exp(w”'z;),! and a zero-mean normal prior with a variance
of o2,
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For this sub-question you don’t need to put likelihood in matrix notation.

3 Principal Component Analysis (2016)

3.1 PCA by Hand

Consider the following dataset, containing 5 examples with 2 features each:

Tq T2
-2 -1
-1 0
0 1
1 2
2 3
Recall that with PCA we usually assume that the PCs are normalized (||w| = 1), we need to center the

data before we apply PCA, and that the direction of the first PC is the one that minimizes the orthogonal
distance to all data points.

1This is one way to use regression to model counts, like “number of Facebook likes”.



1. What is the first principal component?
2. What is the (L2-norm) reconstruction error of the point (3,3)? (Show your work.)
3. What is the (L2-norm) reconstruction error of the point (3,4)? (Show your work.)

3.2 Data Visualization

The script ezample_PCA will load a dataset containing 50 examples, and measuring 85 binary traits of these
animals. It then standardizes these features and gives two unsatisfying visualizations of it. First it shows a
plot of the matrix entries, which has too much information and thus gives little insight into the relationships
between the animals. Next it shows a scatterplot based on two random features and displays the name of 10
randomly-chosen animals. Because of the binary features even a scatterplot matrix shows us almost nothing
about the data.

The function PCA, which applies the classic PCA method (orthogonal bases via SVD) for a given k. Using
this function, modify the demo so that the scatterplot uses the latent features z; from the PCA model. Make
a scatterplot of the two columns in Z, and use the annotate function to label a bunch of the points in the
scatterplot.

1. Hand in your modified demo and the scatterplot.

2. Which trait of the animals has the largest influence (absolute value) on the first principal component?
(Make sure not to forget the “+1” when looking for the name of the trait in the dataTable).

3. Which trait of the animals has the largest influence (absolute value) on the second principal component?

3.3 Data Compression

It is important to know how much of the information in our dataset is captured by the low-dimensional PCA
representation. In class we discussed the “analysis” view that PCA maximizes the variance that is explained
by the PCs, and the connection between the Frobenius norm and the variance of a centered data matrix X.
Use this connection to answer the following:

1. How much of the variance is explained by our two-dimensional representation from the previous ques-
tion?

2. How many PCs are required to explain 50% of the variance in the data?
3. How many PCs are required to explain 75% of the variance in the data?

Note: you can compute the Frobenius norm of a matrix using the function vecnorm. Also, note that the
“variance explained” formula from class assumes that X is already centered.

4 Very-Short Answer Questions

1. What is the key advantage of stochastic gradient methods over gradient descent methods?

2. Does stochastic gradient descent with a fixed step-size converge to the minimum of a convex function
in general?

3. What is the difference between multi-label and multi-class classification?

4. What is the difference between MLE and MAP?



5. Linear regression with one feature and PCA with 2 features (and & = 1) both find a line in a two-
dimensional space. Do they find the same line? Briefly justify your answer.

6. Are the vectors minimizing the PCA objective unique? Briefly justify your answer

7. Name two methods for promoting sparse solutions in a linear regression model that we discussed in
class that result in convex problems.

8. Can we always use the normal equations to solve non-negative least squares problems?

We're looking for short and concise 1-sentence answers, not long and complicated answers. Also, there is
roughly 1-2 questions per lecture.



