
CPSC 340 Assignment 3 (due November 3 ATE)

1 Convex Functions

Recall that convex loss functions are typically easier to minimize than non-convex functions, so it’s important
to be able to identify whether a function is convex.

Show that the following functions are convex:

1. f(w) = αw2 − βw + γ with w ∈ R, α ≥ 0, β ∈ R, γ ∈ R (1D quadratic).

2. f(w) = w log(w) with w > 0 (“neg-entropy”)

3. f(w) = ‖Xw − y‖2 + λ‖w‖1 with w ∈ Rd, λ ≥ 0 (L1-regularized least squares).

4. f(w) =
∑n
i=1 log(1 + exp(−yiwTxi)) with w ∈ Rd (logistic regression).

5. f(w,w0) =
∑N
i=1[max{0, w0 − wTxi} − w0] + λ

2 ‖w‖
2
2 with w ∈ Rd, w0 ∈ R, λ ≥ 0 (“1-class” SVM).

Hint: for the first two you can use the second-derivative test since they are one-dimensional. For the last 3
you’ll have to use some of the results in class regarding how combining convex functions can yield convex
functions. The logistic regression case may not seem obvious with log(x) is concave, but a similar case would
be showing that log(exp(x)) is convex despite this same issue.

2 Gaussian RBFs and Regularization

Unfortunately, in practice we often don’t know what basis to use. However, if we have enough data then
we can make up for this by using a basis that is flexible enough to model any reasonable function. These
may perform poorly if we don’t have much data, but can perform almost as well as the optimal basis as the
size of the dataset grows. In this question you will explore using Gaussian radial basis functions (RBFs),
which have this property. These RBFs depend on a parameter σ, which (like p in the polynomial basis) can
be chosen using a validation set. In this question, you will also see how cross-validation allows you to tune
parameters of the model on a larger dataset than a strict training/validation split would allow.

2.1 Regularization

If you run the demo example RBF.jl, it will load a dataset and split the training examples into a “train”
and a “validation” set (it does this randomly since the data is sorted). It will then search for the best value
of σ for the RBF basis. Once it has the “best” value of σ, it re-trains on the entire dataset and reports the
training error on the full training set as well as the error on the test set.

A strange behaviour appears: if you run the script more than once it might choose different values of σ.
Sometimes it chooses a large value of σ that follows the general trend but misses the oscillations. Other
times it sets σ = 1 or σ = 2, which fits the oscillations better but overfits and gives a much higher test

1



error.1 Modify the leastSquaresRBF function so that it allows a regularization parameter λ and it fits the
model with L2-regularization. Hand in your code, and report and describe how the performance changes if
you use a regularized estimate with λ = 10−12 (a very small value).

2.2 Cross-Validation

While the method rarely performs too badly with regularization, but it’s clear that the randomization of the
training/validation sets has an effect on the value of σ that we choose. This variability would be reduced if
we had a larger “train” and “validation” set, and one way to simulate this is with cross-validation. Modify
the training/validation procedure to use 10-fold cross-validation to select σ, and hand in your code. How
does this change the performance when fixing λ = 10−12?2

2.3 Cost of Non-Parametric Bases

When dealing with larger datasets, an important issue is the dependence of the computational cost on the
number of training examples n and the number of features d.

1. What is the cost in big-O notation of training a linear regression model with Gaussian RBFs on n
training examples with d features (for fixed σ and λ)?

2. What is the cost of classifying t new examples with this model?

3. When is it cheaper to train using Gaussian RBFs than using the basic linear basis?

4. When is it cheaper to test using Gaussian RBFs than using the basic linear basis?

3 Logistic Regression with Sparse Regularization

If you run the function example logistic.jl, it will:

1. Load a binary classification dataset containing a training and a validation set.

2. “Standardize” the columns of X and add a bias variable.

3. Apply the same transformation to Xvalidate.

4. Fit a least squares model, using the sign of wTxi to make predictions.

5. Report the number of features selected by the model (number of non-zero regression weights).

6. Report the error on the training and validation sets.

Least squares does ok as a binary classifier on this dataset, but it uses all the features (even though only
the prime-numbered features are relevant) and the validation error is above the minimum achievable for this
model (which is 1 percent, if you have enough data and know which features are relevant). In this question,
you will modify this demo to use different forms of regularization to improve on these aspects.

1This behaviour seems to be dependent on your exact setup. Because the XTX matrix with the RBF matrix is really-badly
behaved numerically, different floating-point and matrix-operation implementations will handle this in different ways: in some
settings it will actually regularizer for you!

2In practice, we typically use cross-validation to choose both σ and λ

2



3.1 Logistic Regression

Instead of least squares, modify the script to use logistic regression. You can use the logReg.jl file, which
implements the training and prediction function for a logistic regresion classifier (using a version of the
findMin function that does derivative checking for you and that uses more-clever choices of step-sizes).
When you switch to using logistic regression, report how the following quantities change: the training error,
validation error, and number of features.

3.2 L2-Regularization

Make a new function, logRegL2, that takes an input parameter λ and fits a logistic regression model with
L2-regularization. Specifically, while logReg computes w by minimizing

f(w) =

n∑
i=1

log(1 + exp(−yiwTxi)),

your new function logRegL2 should compute w by minimizing

f(w) =

n∑
i=1

[
log(1 + exp(−yiwTxi))

]
+
λ

2
‖w‖2.

Hand in the objective function that your updated code minimizes, and using λ = 1.0 report how the following
quantities change: the training error, the validation error, the number of features used, and the number of
gradient descent iterations.

3.3 L1-Regularization

Make a new function, logRegL1, that takes an input parameter λ and fits a logistic regression model with
L1-regularization,

f(w) =

n∑
i=1

[
log(1 + exp(−yiwTxi))

]
+ λ‖w‖1.

Hand in your logRegL1 code. Using this new code and λ = 1, report the following quantities: the training
error, the validation error, and the number of features the model uses.

You should use the function findMinL1, which implements a proximal-gradient method to minimize the sum
of a differentiable function g and λ‖w‖1,

f(w) = g(w) + λ‖w‖1.

This function has a similar interface to findMin, except that you (a) only provide the code to compute the
function/gradient of the differentiable part g and (b) need to provide the value λ.

3.4 L0-Regularization

The function logRegL0 contains part of the code needed to implement the forward selection algorithm, which
approximates the solution with L0-regularization,

f(w) =

n∑
i=1

[
log(1 + exp(−yiwTxi))

]
+ λ‖w‖0.

3



The ‘for’ loop in this function is missing the part where we fit the model using the subset Sj, then compute the
score and updates the minScore/minS. Modify the ‘for’ loop in this code so that it fits the model using only
the features Sj, computes the score above using these features, and updates the minScore/minS variables
(if you want to turn off the diagonistics generated byfindMin, you can use verbose = false).3 Hand in your
updated code. Using this new code, set λ = 1 and report: the training error, the validation error, and the
number of features used.

Note that the code differs a bit from what we discussed in class, since we assume that the first feature is the
bias variable and assume that the bias variable is always included. Also, note that for this particular case
using the L0-norm with λ = 1 is equivalent to what is known as the Akaike information criterion (BIC) for
variable selection.

4 Very-Short Answer Questions

1. Why would you use a score BIC instead of a validation error for feature selection?

2. Why do we use forward selection instead of exhaustively search all subsets in search and score methods?

3. In L2-regularization, how does λ relate to the two parts of the fundamental trade-off?

4. Give one reason why one might chose to use L1 regularization over L2 and give one reason for the
reverse case.

5. If we have a feature selection method that tends to have many false negatives (it misses many relevant
variables), describe an ensemble feature selection method that could decrease the number of false
negatives.

6. What is the main problem with using least squares to fit a linear model for binary classification?

7. For a linearly-separable binary classification problem, how does an SVM classifier differ from a classifier
found using the perceptron algorithm?

8. When d >> n, why do we use the polynomial kernel to implement the polynomial basis?

9. Which of the following methods produce linear classifiers? (a) binary least squares as in Question 3,
(b) the perceptron algorithm, (c) SVMs, and (d) logistic regression.

Hints: we’re looking for short and concise 1-sentence answers, not long and complicated answers. Also, there
is roughly 1 question per lecture.

3Note that Julia doesn’t like when you re-define functions, but if you change the variable Xs it will actually change the
behaviour of the funObj that is already defined.

4


