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Overview

@ Naive Bayes Classifier

© Non-Parametric Models
@ Definitions
e KNN

@ Training, Testing, and Validation Set
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Naive Bayes Classifier

o Naive Bayes is a probabilistic classifier.

e Based on Bayes’ theorem.

e Strong independence assumption between features.
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Naive Bayes Classifier

o Naive Bayes is a probabilistic classifier.

e Based on Bayes’ theorem.

e Strong independence assumption between features.
@ In the rest of this tutorial,

o We use y; for the label of object i (element i of y).
o We use z; for the features of object i (row i of X).
o We use z;; for feature j of object .

o We use d for the number of features in object 3.
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Naive Bayes Classifier

o Bayes’ rule

Posterior probability ~ Likelihood  Prior probability
pilx,) = pClydp (i)
o p(x;)

Evidence

we want to compare P(y=clx_i) for different values of c
and choose the maximum value
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we want to compare P(y=c|x_i) for different values of c
and choose the maximum value


Naive Bayes Classifier

o Bayes’ rule

Posterior probability Likelihood Prior probability
pilx,) = pClydp (i)
o p(x;)

Evidence

e Since the denominator does not depend on y;, we are only

interested in the numerator:

p(yill‘i) o< p(w4yi)p(vi)
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Naive Bayes Classifier

@ The numerator is equal to the joint probability:

P($i|yz‘)P(yz‘) = p(xi, yi) = p(iﬂm vy Lidy yi)

P(xi1,xi2,...,yi) = P(xi1lxi2,xi3,...yi) P(xi2,xi3,...,yi)
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P(xi1,xi2,…,yi) = P(xi1|xi2,xi3,…yi) P(xi2,xi3,…,yi)


Naive Bayes Classifier

@ The numerator is equal to the joint probability:

P($i|yz‘)P(yz‘) = p(xi, yi) = p(iﬂm vy Lidy yi)

o Chain rule:

p(xﬂ, --~,$id7yz’) :p($i1|xi27 ~-~7$idayi)p(xi27 ~--7$id,yi)

= p(xi1|Ti2, ..., Tid, Yi)P(Ti2| Tz, oy Tias Yi) - P(Tialyi)p(yi)
P(xi1lyi) P(xi2lyi) P(xidlyi)  P(yi)

These are our parameters
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P(xi1|yi)

P(xi2|yi)

P(xid|yi)

P(yi)

These are our parameters


Naive Bayes Classifier

@ The numerator is equal to the joint probability:

p(xilyi)p(yi) = p(@i i) = p(Tit, s Tid, Yi)

o Chain rule:

p(xﬂ, --~7$id7yz’) :p(ﬂ?i1|$i27 ~-~7$idayi)p(xi27 ~--7$id,yi)

= p(@it|viz, -, Tid, Yi)D(Ti2| i3, oy Tid, Yi) - P(ialyi)p(yi)
e Each feature in z; is independent of the others given y;:

P(fﬂijlwz‘jJrh oy Lids yi) = P($ij|yi)
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Naive Bayes Classifier

@ The numerator is equal to the joint probability:

p(xilyi)p(yi) = p(@i i) = p(Tit, s Tid, Yi)

o Chain rule:

p(xﬂ, --~7$id7yz’) :p(ﬂ?i1|$i27 ~-~7$idayi)p(xi27 ~--7$id,yi)

= p(@it|viz, -, Tid, Yi)D(Ti2| i3, oy Tid, Yi) - P(ialyi)p(yi)
e Each feature in z; is independent of the others given y;:

P(fﬂijlwz‘jJrh oy Lids yi) = P($ij|yi)

o Therefore: our score for a given yi
d

p(Yi i) o< p(yi) H p(zijlyi)
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our score for a given yi


Problem: Naive Bayes Classifier

headache runny nose fever flu
N Y Y N
Y N N N
N N N N
Y Y Y Y
Y Y N Y
N N Y Y
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Problem: Naive Bayes Classifier

Prior: P(flu=N)

We first need to
compute our parameters

=3/6 =1/2

=1/3

headache runny nose fever flu
N Y Y N
Y N N N
N N N N
Y Y Y Y

Y Y N Y
N N Y Y

headache runny nose fever flu

Y N Y ?

conditional: P(head=YIflu=N)
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We first need to 
compute our parameters

Prior: P(flu=N)
= 3/6 =1/2 

conditional: P(head=Y|flu=N)
= 1/3


Solution: Naive Bayes Classifier

e We need

p(headache=Y[flu=N) 1/3
p(headache=Y [flu=Y) 2/3
p(runny nose=N|[flu=N) |2/3
p(runny nose=N[flu=Y) |1/3
p(fever=Y|[flu=N) 1/3
p(fever=Y|flu=Y) 2/3
p(flu=N) 1/2
p(flu=Y) 1/2
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Solution: Naive Bayes Classifier

e We need

p(headache=Y[flu=N) 1/3
p(headache=Y [flu=Y) 2/3
p(runny nose=N|[flu=N) |2/3
p(runny nose=N[flu=Y) |1/3

p(fever=Y|[flu=N) 1/3
p(fever=Y|flu=Y) 2/3
p(flu=N) 1/2
p(flu=Y) 1/2

o p(flu = N|headache = Y, runny nose = N, fever = Y) x
p(headache = Y|flu = N)p(runny nose = N|flu = N)p(fever =

Yflu= N)p(flu=N) = %2 %35 =0.0370

7/14



Solution: Naive Bayes Classifier

e We need

p(headache=Y[flu=N) 1/3
p(headache=Y [flu=Y) 2/3
p(runny nose=N|[flu=N) |2/3
p(runny nose=N[flu=Y) |1/3

p(fever=Y|[flu=N) 1/3
p(fever=Y|flu=Y) 2/3
p(flu=N) 1/2
p(flu=Y) 1/2

o p(flu = N|headache = Y, runny nose = N, fever = Y) x
p(headache = Y|flu = N)p(runny nose = N|flu = N)p(fever =
Yflu= N)p(flu=N) = %2 %35 =0.0370

o p(flu = Y|headache = Y, runny nose = N, fever = Y) x
p(headache = Yflu = Y)p(runny nose = N|flu = Y)p(fever =

Yiflu=Y)p(flu=Y)=2x1x%2x1=0.0741
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Solution: Naive Bayes Classifier

e We need

p(headache=Y[flu=N) 1/3
p(headache=Y [flu=Y) 2/3
p(runny nose=N|[flu=N) |2/3
p(runny nose=N[flu=Y) |1/3

p(fever=Y|[flu=N) 1/3
p(fever=Y|flu=Y) 2/3
p(flu=N) 1/2
p(flu=Y) 1/2

o p(flu = N|headache = Y, runny nose = N, fever = Y) x
p(headache = Y|flu = N)p(runny nose = N|flu = N)p(fever =
Yflu= N)p(flu=N) = %2 %35 =0.0370

o p(flu = Y|headache = Y, runny nose = N, fever = Y) x
p(headache = Yflu = Y)p(runny nose = N|flu = Y)p(fever =

Yiflu=Y)p(flu=Y)=2x1x%2x1=0.0741

headache runny nose fever flu
Y N Y Y
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Bayes’ Theorem

@ Bayes’ Theorem enables us to reverse probabilities:

P(BIA) P(A)

PlAIR). === /9(@)
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Problem: Prosecutor’s fallacy

”"'.

@ A crime has been committed in a large city and footprints are
found at the scene of the crime. The guilty person matches the
footprints, p(F|G) = 1. Out of the innocent people, 1% match
the footprints by chance, p(F| ~ G) = 0.01. A person is
interviewed at random and his/her footprints are found to match
those at the crime scene. Determine the probability that the
person is guilty, or explain why this is not possible, p(G|F) =7

o Let F' be the event that the footprints match.
o Let G be the event that the person is guilty

o ~ (G be the event that the person is innocent.
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Solution: Prosecutor’s fallacy
00..
‘ ‘
(~G)

p(FIG)p(G) _ p(F|G)p(G)
p(F) p(F|G)p(G) +p(F| ~ G)p

p(G|F) =
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Solution: Prosecutor’s fallacy
00..
‘ ‘
(~G)

_ p(FIGp(G) p(F|G)p(G)
p(F) p(F|G)p(G) +p(F| ~ G)p

p(G|F)

e p(G) =? — Impossible!
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Definitions

o Parametric Models

o Fixed number of parameters - learned (estimated) from data

o More data = More accurate models.
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Definitions

e Parametric Models
o Fixed number of parameters - learned (estimated) from data
o More data = More accurate models.

e Non-parametric Models

o Number of parameters grows with the amount of data

o More data More complex models.
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Definitions

o Parametric Models

o Fixed number of parameters - learned (estimated) from data

o More data = More accurate models.

o Non-parametric Models

o Number of parameters grows with the amount of data

o More data More complex models.

o Parametric or Non-parametric? What are the parameters?
o Decision Trees P (if depth is given)
o Naive Bayes P (if features are discrete)
o KNN Non-p

¢ )
o Random Forests (the number of trees are fixed,

but the depth usually varies with data) Non-p
o K-Means Clustering, (k is given)
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P (if depth is given)

P (if features are discrete)

Non-p 

(the number of trees are fixed, 
but the depth usually varies with data) Non-p

P (k is given)


k-Nearest Neighbour

e How does it work?
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k-Nearest Neighbour

e How does it work?

o What is the effect of k with respect to the fundamental tradeoff

in machine learning?
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k-Nearest Neighbour

e How does it work?

o What is the effect of k with respect to the fundamental tradeoff

in machine learning?

o What is the runtime?
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Training, Testing, and Validation Set

Given training data, we would like to learn a model to minimize

error on the testing data
How do we decide decision tree depth?
We care about test error.

But we can’t look at test data.

One answer: Use part of your train data to approximate test

error.
Split training objects into training set and validation set:

o Train model on the training data.

o Test model on the validation data.
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Cross-Validation

o Isn’t it wasteful to only use part of your data?

o k-fold cross-validation:
e Train on k-1 folds of the data, validate on the other fold.

o Repeat this k times with different splits, and average the score.

[eraion 1[0 000 0/000000000000000
[erstion 2}-> OO O OGP0 DT 999099000
[iereton 3} OO 999999092 000000000

00000000000000000000]

All data |-

Figure 1: Adapted from Wikipedia.

o Note: if examples are ordered, split should be random.
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