CPSC 340: Machine Learning and Data Mining

Non-Parametric Models
Fall 2016

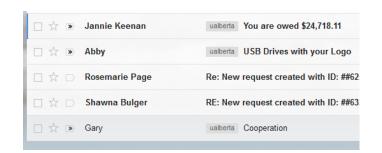
Admin

- Assignment 0:
 - 1 late day to hand it in tonight, 2 late days for Wednesday.
- Assignment 1 is out:
 - Due Friday of next week. It's long so start early.

Add/drop deadline is tomorrow.

Last Time: E-mail Spam Filtering

• Want a build a system that filters spam e-mails:



- We formulated as supervised learning:
 - $-(y_i = 1)$ if e-mail 'i' is spam, $(y_i = 0)$ if e-mail is not spam.
 - $-(x_{ij} = 1)$ if word/phrase 'j' is in e-mail 'i', $(x_{ij} = 0)$ if it is not.

\$	Hi	CPSC	340	Vicodin	Offer		Spam?
1	1	0	0	1	0		1
0	0	0	0	1	1		1
0	1	1	1	0	0		0
							•••

Last Time: Naïve Bayes

We considered spam filtering methods based on naïve Bayes:

$$\rho(y_i = ||span''||x_i) = \frac{\rho(x_i | y_i = ||span''|)\rho(y_i = ||span''|)}{\rho(x_i)}$$

Makes conditional independence assumption to make learning practical:

- Predict "spam" if $p(y_i = "spam" \mid x_i) > p(y_i = "not spam" \mid x_i)$.
 - We don't need $p(x_i)$ to test this.

Laplace Smoothing

• Our estimate of p('lactase' = 1| 'spam') is:

- Problem if you have no spam messages with lactase:
 - p('lactase' | 'spam') = 0, and message automatically gets through filter.
- Common fix is Laplace smoothing estimate:
 - Add 1 to numerator, and add 1 for each possible label to denominator.

• A common variation is to use a different number β rather than 1.

Decision Theory

- Are we equally concerned about "spam" vs. "not spam"?
- True positives, false positives, false negatives, false negatives:

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	True Positive	False Positive
Predict 'not spam'	False Negative	True Negative

- The costs mistakes might be different:
 - Letting a spam message through (false negative) is not a big deal.
 - Filtering a not spam (false positive) message will make users mad.

Decision Theory

We can give a cost to each scenario, such as:

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	0	100
Predict 'not spam'	10	0

Instead of most probable label, take yhat minimizing expectated cost:

expectation of model
$$\{\hat{y}_i, \hat{y}_i\}$$
 expectation of model $\{\hat{y}_i, \hat{y}_i\}$ with respect to \hat{y}_i

• Even if "spam" has a higher probability, predicting "spam" might have a higher cost.

Decision Theory Example

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	0	100
Predict 'not spam'	10	0

• If for a test example we have $p(\tilde{y}_i = \text{``spam''} \mid \tilde{y}_i) = 0.6$, then:

$$\begin{aligned}
& \left[\left(\cos \left(\frac{\hat{y}_{i}}{\hat{y}_{i}} \right) \right] = \rho(\tilde{y}_{i} = \text{"spam"} | \tilde{x}_{i}) \cos \left(\frac{\hat{y}_{i}}{\hat{y}_{i}} \right) = \text{"spam"}, \tilde{y}_{i} = \text{"spam"}, \\
& + \rho(\tilde{y}_{i} = \text{"not spam"} | \tilde{x}_{i}) \cos \left(\frac{\hat{y}_{i}}{\hat{y}_{i}} \right) = \text{"not spam"}, \\
& = (0.6)(0) + (0.4)(100) = 40
\end{aligned}$$

$$\begin{aligned}
& \left(\cos \left(\frac{\hat{y}_{i}}{\hat{y}_{i}} \right) = (0.6)(10) + (0.4)(0) = 6
\end{aligned}$$

$$\begin{aligned}
& \left(\cos \left(\frac{\hat{y}_{i}}{\hat{y}_{i}} \right) \right) = (0.6)(10) + (0.4)(0) = 6
\end{aligned}$$

• Even though "spam" is more likely, we should predict "not spam".

Decision Theory Discussion

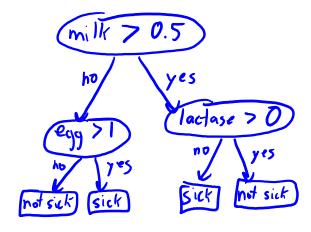
- In other applications, the costs could be different.
 - In cancer screening, maybe false positives are ok, but don't want to miss false negatives.

- Decision theory and "darts":
 - http://www.datagenetics.com/blog/january12012/index.html

- Decision theory can help with "unbalanced" class labels:
 - If 99% of e-mails are spam, you get 99% accuracy by always predicting "spam".
 - Decision theory approach avoids this.
 - See also precision/recall curves and ROC curves in the bonus material.

Decision Trees vs. Naïve Bayes

Decision trees:



Naïve Bayes:

- 1. Sequence of rules based on 1 feature.
- 2. Training: 1 pass over data per depth.
- 3. Greedy splitting as approximation.
- 4. Testing: just look at features in rules.
- 5. New data: might need to change tree.
- 6. Accuracy: good if simple rules based on individual features work ("symptoms").

- 1. Simultaneously combine all features.
- 2. Training: 1 pass over data to count.
- 3. Conditional independence assumption.
- 4. Testing: look at all features.
- 5. New data: just update counts.
- 6. Accuracy: good if features almost independent given label (text).

Parametric vs. Non-Parametric

- Decision trees and naïve Bayes are often not very accurate.
 - Greedy rules or conditional independence might be bad assumptions.
 - They are also parametric models.

Parametric vs. Non-Parametric

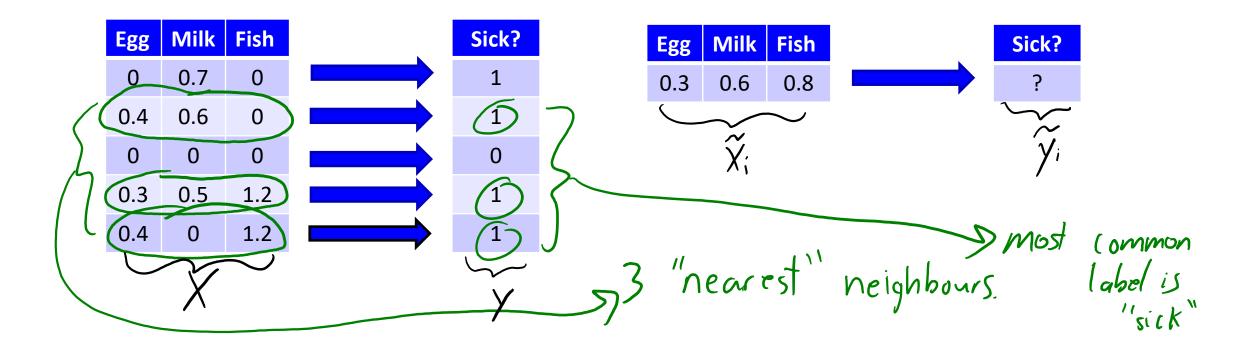
Parametric models:

- Have a fixed number of parameters: size of "model" is O(1) in terms 'n'.
 - E.g., fixed-depth decision tree just stores rules.
 - E.g., naïve Bayes just stores counts.
- You can estimate the fixed parameters more accurately with more data.
- But eventually more data doesn't help: model is too simple.

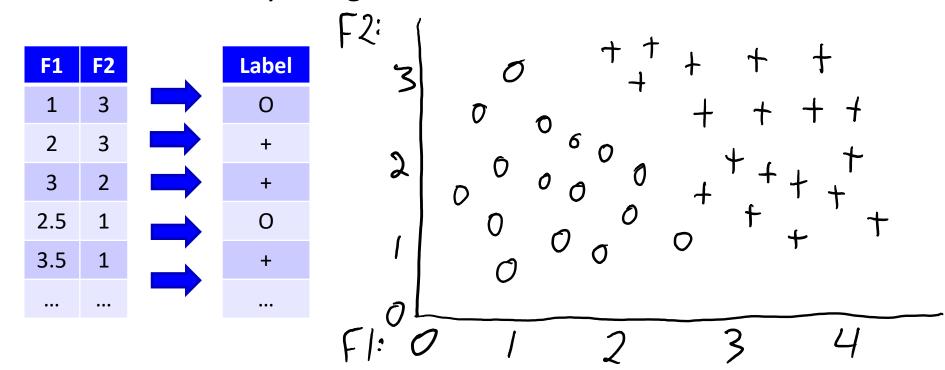
Non-parametric models:

- Number of parameters grows with 'n': size of "model" depends on 'n'.
- Model gets more complicated as you get more data.
- E.g., decision tree whose depth grows with the number of examples.

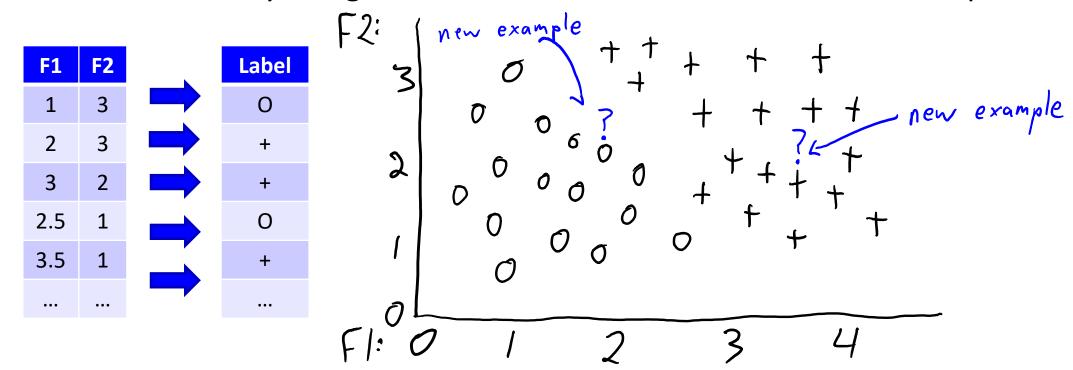
- Classical non-parametric classifier is k-nearest neighbours (KNN).
- To classify an object \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" examples.



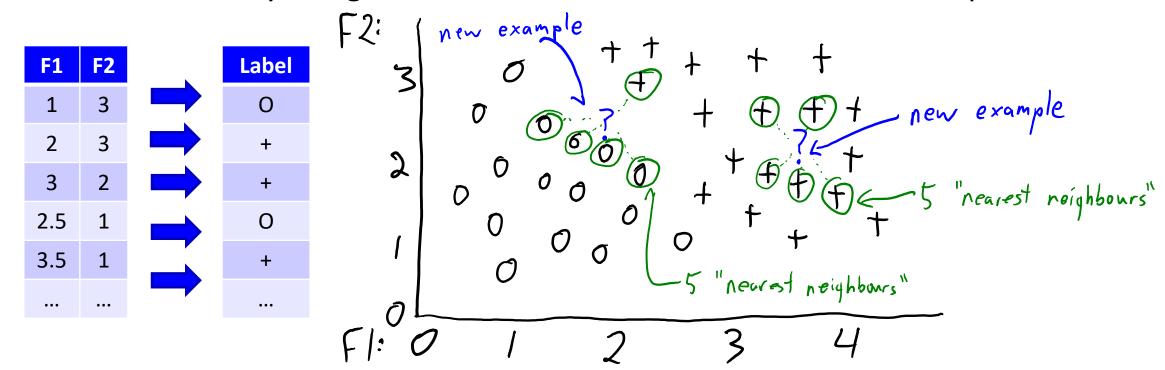
- Classical non-parametric classifier is k-nearest neighbours (KNN).
- To classify an object \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" examples.



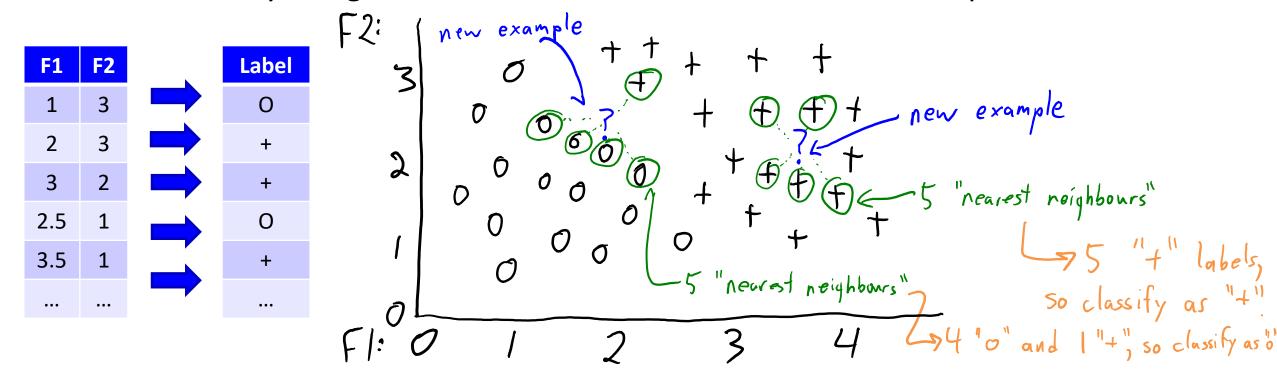
- Classical non-parametric classifier is k-nearest neighbours (KNN).
- To classify an object \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" examples.



- Classical non-parametric classifier is k-nearest neighbours (KNN).
- To classify an object \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" examples.



- Classical non-parametric classifier is k-nearest neighbours (KNN).
- To classify an object \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" examples.



Most common distance function is Euclidean distance:

$$\|x_i - \tilde{x}_i^*\| = \sqrt{\sum_{j=1}^{2} (x_{ij} - \tilde{x}_{ij}^*)^2}$$

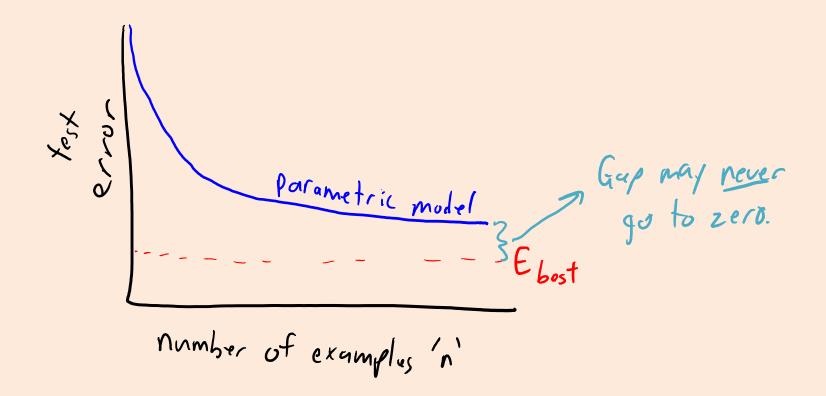
- $-x_i$ is features of training example 'i', and $\tilde{x}_{\tilde{i}}$ is features of test example ' \tilde{i} '.
- Assumption:
 - Objects with similar features likely have similar labels.

- With a small 'n', KNN model will be very simple.
- Model gets more complicated as 'n' increases.
 - Starts to detect subtle differences between examples.

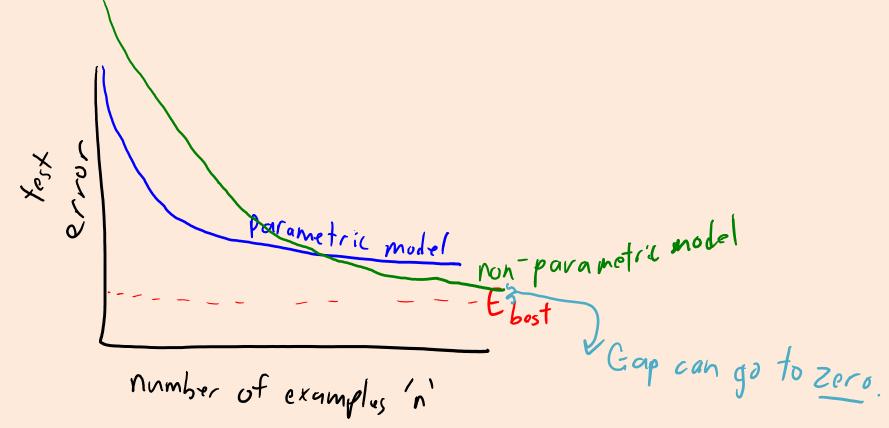
Consistency of KNN

- KNN has appealing consistency properties:
 - As 'n' goes to ∞, KNN test error is less than twice best possible error.
 - For fixed 'k' and binary labels (under mild assumptions).
- Stone's Theorem: KNN is "universally consistent".
 - If k/n goes to zero and 'k' goes to ∞ , converges to the best possible error.
 - First algorithm shown to have this property.
- Does Stone's Theorem violate the no free lunch theorem?
 - No: it requires a continuity assumption on the labels.
 - Consistency says nothing about finite 'n' (see "<u>Dont Trust Asymptotics</u>").

Parametric vs. Non-Parametric Models



Parametric vs. Non-Parametric Models



Curse of Dimensionality

- "Curse of dimensionality": problems with high-dimensional spaces.
 - Volume of space grows exponentially with dimension.
 - Circle has area O(r²), sphere has area O(r³), 4d hyper-sphere has area O(r⁴),...
 - Need exponentially more points to 'fill' a high-dimensional volume.
 - "Nearest" neighbours might be really far even with large 'n'.
- KNN is also problematic if features have very different scales.

Nevertheless, KNN is really easy to use and often hard to beat!

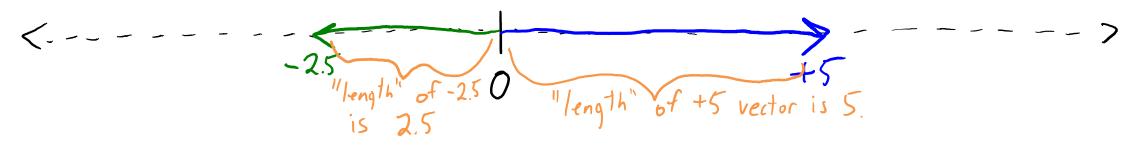
KNN Implementation

- There is no training phase in KNN ("lazy" learning).
 - You just store the training data.
 - Non-parametric because the size of the model is O(nd).

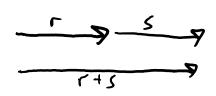
- But predictions are expensive: O(nd) to classify 1 test object.
 - Tons of work on reducing this cost (we'll discuss this later).
- There are also alternatives to Euclidean distance...

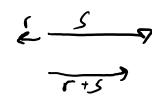
Norms in 1-Dimension

We can view absolute value, |r|, as 'size' or 'length' of a number 'r':



- It satisfies three intuitive properties of 'length':
 - 1. Only '0' has a 'length' of zero.
 - 2. Multiplying 'r' by constant ' α ' multiplies length by $|\alpha|$: $|\alpha r| = |\alpha||r|$.
 - "If be will twice as long if you multiply by 2".
 - 3. Length of 'r+s' is not more than length of 'r' plus length of 's':
 - "You can't get there faster by a detour".
 - "Triangle inequality": $|r + s| \le |r| + |s|$.





Norms in 2-Dimensions

- In 1-dimension, only scaled absolute values satisfy the 3 properties.
- In 2-dimensions, there is no unique function satisfying them.
- We call any function satisfying them a norm:
 - Measures of "size" or "length" in 2-dimensions.
- Three most common examples:

La or "Euclidean" norm.

$$||r||_2 = \sqrt{r_1^2 + r_2^2}$$

La or "Manhatlan" norm:

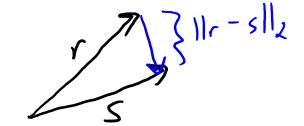
 $||r||_2 = |r_1| + |r_2|$
 $||r||_2 = |r||_2 + |$

Norms as Measures of Distance

By taking norm of difference, we get a "distance" between vectors:

$$||r-s||_2 = \sqrt{(r_1-s_1)^2 + (r_2-s_2)^2}$$

= $||r-s||$ "Enclidean distance"



$$||r - s||_1 = |r_1 - s_1| + |r_2 - s_2|$$

"Number of blocks you need to walk to get from r to s."

$$||r-s||_{b} = m_{4x} \{ |r_1-s_1|_{\gamma} |r_2-s_2| \}$$

"Most number of blocks in any direction you would have to walk."

Norms in d-Dimensions

We can generalize these common norms to d-dimensional vectors:

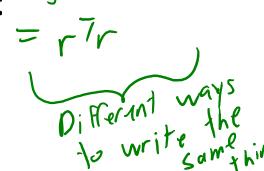
$$L_{2}: ||r||_{2} = \int_{j=1}^{d} r_{j}^{2} \qquad L_{1}: ||r||_{1} = \int_{j=1}^{d} |r_{j}| \qquad L_{\infty}: \max_{j \in I} \{|r_{j}|\}$$

$$E.g., \text{ in } 3-\text{dimensions:} \qquad \qquad ||r||_{2} = (||r||_{2})^{2}$$

$$||r||_{2} = \int_{r_{1}^{2} + r_{2}^{2} + r_{3}^{2} + r_{4}^{2}} \qquad \qquad = (\int_{j=1}^{d} r_{j}^{2})^{2}$$

$$= (\int_{j=1}^{d} r_{j}^{2} + r_{2}^{2} + r_{3}^{2} + r_{4}^{2}} \qquad \qquad = \int_{j=1}^{d} r_{j}^{2}$$

- These norms place different "weights" on large values:
 - L₁: all values are equal.
 - L₂: bigger values are more important (because of squaring).
 - $-L_{\infty}$: only biggest value is important.



KNN Distance Functions

- Most common KNN distance functions: $norm(x_i x_i)$.
- But we can consider other distance/similarity functions:
 - Hamming distance.
 - Jaccard similarity (if x_i are sets).
 - Edit distance (if x_i are strings).
 - Metric learning (learn the best distance function).

Summary

- Decision theory allows us to consider costs of predictions.
- Non-parametric models grow with number of training examples.
- K-Nearest Neighbours: simple non-parametric classifier.
 - Appealing "consistency" properties.
 - Suffers from high prediction cost and curse of dimensionality.

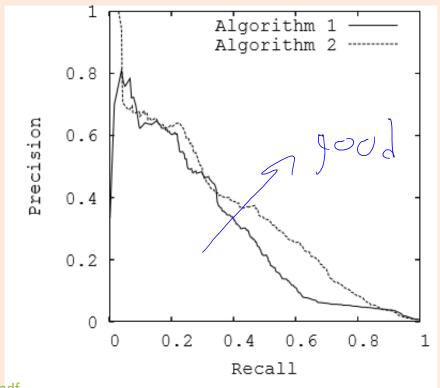
- Next Time:
 - Fighting the fundamental trade-off and Microsoft Kinect.

Other Performance Measures

- Classification error might be wrong measure:
 - Use weighted classification error if have different costs.
 - Might want to use things like Jaccard measure: TP/(TP + FP + FN).
- Often, we report precision and recall (want both to be high):
 - Precision: "if I classify as spam, what is the probability it actually is spam?"
 - Precision = TP/(TP + FP).
 - High precision means the filtered messages are likely to really be spam.
 - Recall: "if a message is spam, what is probability it is classified as spam?"
 - Recall = TP/(TP + FN)
 - High recall means that most spam messages are filtered.

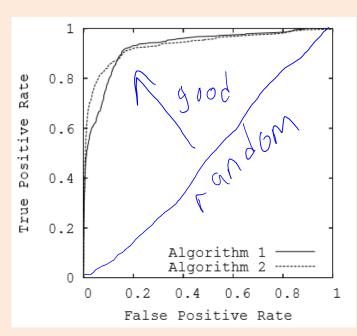
Precision-Recall Curve

- Consider the rule $p(y_i = 'spam' \mid x_i) > t$, for threshold 't'.
- Precision-recall (PR) curve plots precision vs. recall as 't' varies.



ROC Curve

- Receiver operating characteristic (ROC) curve:
 - Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).



(negative examples classified as positive)

- Diagonal is random, perfect classifier would be in upper left.
- Sometimes papers report area under curve (AUC).
 - Reflects performance for different possible thresholds on the probability.

More on Unbalanced Classes

- With unbalanced classes, there are many alternatives to accuracy as a measure of performance:
 - Two common ones are the Jaccard coefficient and the F-score.

- Some machine learning models don't work well with unbalanced data. Some common heuristics to improve performance are:
 - Under-sample the majority class (only take 5% of the spam messages).
 - https://www.jair.org/media/953/live-953-2037-jair.pdf
 - Re-weight the examples in the accuracy measure (multiply training error of getting non-spam messages wrong by 10).
 - Some notes on this issue are <u>here.</u>

More on Weirdness of High Dimensions

- In high dimensions:
 - Distances become less meaningful:
 - All vectors may have similar distances.
 - Emergence of "hubs" (even with random data):
 - Some datapoints are neighbours to many more points than average.
 - Visualizing high dimensions and sphere-packing

Vectorized Distance Calculation

- To classify 't' test examples based on KNN, cost is O(ndt).
 - Need to compare 'n' training examples to 't' test examples,
 and computing a distance between two examples costs O(d).
- You can do this slightly faster using fast matrix multiplication:
 - Let D be a matrix such that D_{ii} contains:

$$||x_i - y_j||^2 = ||x_i||^2 - 2x_i^T x_j + ||x_j||^2$$

where 'i' is a training example and 'j' is a test example.

— We can compute D in Julia using:

$$D = X.^2*ones(d,t) + ones(n,d)*(Xtest').^2 - 2*X*Xtest';$$

And you get an extra boost because Julia uses multiple cores.

Squared/Euclidean-Norm Notation

We're using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

$$||x||_2 = \sqrt{\sum_{j=1}^d w_j^2}.$$

 $||x||_1 = \sum_{j=1}^d |w_j|.$

If the subscript is omitted, we mean the 2-norm:

$$||x|| = ||x||_2$$
.

If we want to talk about the squared value of the norm we use a superscript of "2":

$$\|x\|_2^2 = \sum_{j=1}^d w_j^2$$
.
 $\|x\|_1^2 = \left(\sum_{j=1}^d |w_j|\right)^2$.

If we omit the subscript and have a superscript of "2", we're taking about the squared L2-norm:

$$||x||^2 = \sum_{j=1}^d w_j^2$$

Lp-norms

• The L_1 -, L_2 -, and L_{∞} -norms are special cases of Lp-norms:

$$||x||_p = \left(\sum_{j=1}^d x_j^p\right)^{p}$$

- This gives a norm for any (real-valued) p ≥ 1.
 - The L_{∞} -norm is limit as 'p' goes to ∞.
- For p < 1, not a norm because triangle inequality not satisfied.