
CPSC 340:
Machine Learning and Data Mining

Probabilistic Classification

Fall 2017

Admin

• Assignment 0 is due tonight: you should be almost done.

– 1 late day to hand it in Monday, 2 late days for Wednesday.

• Assignment 1 is coming Monday: start early.

• Important webpages:

– www.cs.ubc.ca/~schmidtm/Courses/340-F17

– www.piazza.com/ubc.ca/winterterm12017/cpsc340/home

http://www.cs.ubc.ca/~schmidtm/Courses/340-F17
http://www.piazza.com/ubc.ca/winterterm12017/cpsc340/home

Last Time: Training, Testing, and Validation

• Training step:

• Prediction step:

• What we are interested in is the test error:
– Error made by prediction step on new data.

Last Time: Fundamental Trade-Off

• We decomposed test error to get a fundamental trade-off:

– Where Eapprox = (Etest – Etrain).

• Etrain goes down as model gets complicated:

– Training error goes down as a decision tree gets deeper.

• But Eapproxr goes up as model gets complicated:

– Training error becomes a worse approximation of test error.

Last Time: Validation Errorr

• Golden rule: we can’t look at test data during training.

• But we can approximate Etest with a validation error:
– Error on a set of training examples we “hid” during training.

– Find the decision tree based on the “train” rows.

– Validation error is the error of the decision tree on the “validation” rows.

Should you trust them?

• Scenario 1:
– “I built a model based on the data you gave me.”

– “It classified your data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably not:
– They are reporting training error.

– This might have nothing to do with test error.

– E.g., they could have fit a very deep decision tree.

• Why ‘probably’?
– If they only tried a few very simple models, the 98% might be reliable.

– E.g., they only considered decision stumps with simple 1-variable rules.

Should you trust them?

• Scenario 2:

– “I built a model based on half of the data you gave me.”

– “It classified the other half of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably:

– They computed the validation error once.

– This is an unbiased approximation of the test error.

– Trust them if you believe they didn’t violate the golden rule.

Should you trust them?

• Scenario 3:

– “I built 10 models based on half of the data you gave me.”

– “One of them classified the other half of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably:

– They computed the validation error a small number of times.

– Maximizing over these errors is a biased approximation of test error.

– But they only maximized it over 10 models, so bias is probably small.

– They probably know about the golden rule.

Should you trust them?

• Scenario 4:
– “I built 1 billion models based on half of the data you gave me.”

– “One of them classified the other half of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably not:
– They computed the validation error a huge number of times.

– Maximizing over these errors is a biased approximation of test error.

– They tried so many models, one of them is likely to work by chance.

• Why ‘probably’?
– If the 1 billion models were all extremely-simple, 98% might be reliable.

Should you trust them?

• Scenario 5:
– “I built 1 billion models based on the first third of the data you gave me.”

– “One of them classified the second third of the data with 98% accuracy.”

– “It also classified the last third of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably:
– They computed the first validation error a huge number of times.

– But they had a second validation set that they only looked at once.

– The second validation set gives unbiased test error approximation.

– This is ideal, as long as they didn’t violate golden rule on the last third.

– And assuming you are using IID data in the first place.

Validation Error and Optimization Bias

• Optimization bias is small if you only compare a few models:

– Best decision tree on the training set among depths, 1, 2, 3,…, 10.

– Risk of overfitting to validation set is low if we try 10 things.

• Optimization bias is large if you compare a lot of models:

– All possible decision trees of depth 10 or less.

– Here we’re using the validation set to pick between a billion+ models:

• Risk of overfitting to validation set is high: could have low validation error by chance.

– If you did this, you might want a second validation set to detect overfitting.

Cross-Validation (CV)

• Isn’t it wasteful to only use part of your data?

• 5-fold cross-validation:

– Train on 80% of the data, validate on the other 20%.

– Repeat this 5 more times with different splits, and average the score.

Cross-Validation (CV)

• You can take this idea further:

– 10-fold cross-validation: train on 90% of data and validate on 10%.

• Repeat 10 times and average.

– Leave-one-out cross-validation: train on all but one training example.

• Repeat n times and average.

• Gets more accurate but more expensive with more folds.

– To choose depth we compute the cross-validation score for each depth.

• As before, if data is ordered then folds should be random splits.

– Randomize first, then split into fixed folds.

Cross-Validation Pseudo-Code

(pause)

The “Best” Machine Learning Model

• Decision trees are not always most accurate on test error.

• What is the “best” machine learning model?

• First we need to define generalization error:
– Test error restricted to new feature combinations (no xi from train set).

• No free lunch theorem:
– There is no “best” model achieving the best generalization error for every

problem.

– If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.

• This question is like asking which is “best” among “rock”, “paper”,
and “scissors”.

The “Best” Machine Learning Model

• Implications of the lack of a “best” model:
– We need to learn about and try out multiple models.

• So which ones to study in CPSC 340?
– We’ll usually motivate each method by a specific application.

– But we’re focusing on models that have been effective in many applications.

• Caveat of no free lunch (NFL) theorem:
– The world is very structured.

– Some datasets are more likely than others.

– Model A really could be better than model B on every real dataset in practice.

• Machine learning research:
– Large focus on models that are useful across many applications.

Application: E-mail Spam Filtering

• Want a build a system that detects spam e-mails.

– Context: spam used to be a big problem.

• Can we formulate as supervised learning?

Spam Filtering as Supervised Learning

• Collect a large number of e-mails, gets users to label them.

• We can use (yi = 1) if e-mail ‘i’ is spam, (yi = 0) if e-mail is not spam.

• Extract features of each e-mail (like bag of words).

– (xij = 1) if word/phrase ‘j’ is in e-mail ‘i’, (xij = 0) if it is not.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Feature Representation for Spam

• Are there better features than bag of words?

– We add bigrams (sets of two words):

• “CPSC 340”, “wait list”, “special deal”.

– Or trigrams (sets of three words):

• “Limited time offer”, “course registration deadline”, “you’re a winner”.

– We might include the sender domain:

• <sender domain == “mail.com”>.

– We might include regular expressions:

• <your first and last name>.

• Also, note that we only need list of non-zero features for each xi.

Review of Supervised Learning Notation

• We have been using the notation ‘X’ and ‘y’ for supervised learning:

• X is matrix of all features, y is vector of all labels.

– We use yi for the label of object ‘i’ (element ‘i’ of ‘y’).

– We use xij for feature ‘j’ of object ‘i‘.

– We use xi as the list of features of object ‘i’ (row ‘i’ of ‘X’).

• So in the above x3 = [0 1 1 1 0 0 …].

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Probabilistic Classifiers

• For years, best spam filtering methods used naïve Bayes.
– A probabilistic classifier based on Bayes rule.

– It tends to work well with bag of words.

– Last year shown to improve on state of the art for CRISPR “gene editing” (link).

• Probabilistic classifiers model the conditional probability, p(yi | xi).
– “If a message has words xi, what is probability that message is spam?”

• Classify it has spam if probability of spam is higher than not spam:
– If p(yi = “spam” | xi) > p(yi = “not spam” | xi)

• return “spam”.

– Else
• return “not spam”.

http://www.biorxiv.org/content/biorxiv/early/2016/12/02/078253.full.pdf

Spam Filtering with Bayes Rule

• To model conditional probability, naïve Bayes uses Bayes rule:

• So we need to figure out three types of terms:

– Marginal probabilities p(yi) that an e-mail is spam.

– Marginal probability p(xi) that an e-mail has the set of words xi.

– Conditional probability P(xi | yi) that a spam e-mail has the words xi.

• And the same for non-spam e-mails.

Spam Filtering with Bayes Rule

• What do these terms mean?

ALL E-MAILS
(including duplicates)

Spam Filtering with Bayes Rule

• p(yi = “spam”) is probability that a random e-mail is spam.

– This is easy to approximate from data: use the proportion in your data.

ALL E-MAILS
(including duplicates)

SPAM
NOT

SPAM
This is a “maximum likelihood estimate”, a
concept we’ll discuss in detail later. If you’re
interested in a proof, see here.

http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

Spam Filtering with Bayes Rule

• p(xi) is probability that a random e-mail has features xi:

– This is hard to approximate (there are so many possible e-mails).

ALL E-MAILS
(including duplicates)

Spam Filtering with Bayes Rule

• p(xi) is probability that a random e-mail has features xi:

– This is hard to approximate (there are so many possible e-mails),
but it turns out we can ignore it:

Spam Filtering with Bayes Rule

• p(xi | yi = “spam”) is probability that spam has features xi.

ALL E-MAILS
(including duplicates)

NOT
SPAM SPAM

• Also hard to estimate.
• And we need it.

Naïve Bayes

• Naïve Bayes makes a big assumption to make things easier:

• We assume all features xi are conditionally independent give label yi.

– Once you know it’s spam, probability of “vicodin” doesn’t depend on “CPSC 340”.

– Definitely not true, but sometimes a good approximation.

• And now we only need easy quantities like p(“vicodin” = 1| yi = “spam”).

Naïve Bayes

• p(“vicodin” = 1 | “spam” = 1) is probability of seeing “vicodin” in spam.

ALL POSSIBLE E-MAILS
(including duplicates)

SPAM
NOT

SPAM

• Easy to estimate:
Vicodin

Naïve Bayes

• Naïve Bayes more formally:

• Post-lecture slides: how to train/test by hand on a simple example.

Summary

• Optimization bias: using a validation set too much overfits.

• Cross-validation: allows better use of data to estimate test error.

• No free lunch theorem: there is no “best” ML model.

• Probabilistic classifiers: try to estimate p(yi | xi).

• Naïve Bayes: simple probabilistic classifier based on counting.

– Uses conditional independence assumptions to make training practical.

• Next time:

– A “best” machine learning model as ‘n’ goes to ∞.

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Avoiding Underflow

• During the prediction, the probability can underflow:

• Standard fix is to (equivalently) maximize the logarithm of the probability:

Back to Decision Trees

• Instead of validation set, you can use CV to select tree depth.

• But you can also use these to decide whether to split:

– Don’t split if validation/CV error doesn’t improve.

– Different parts of the tree will have different depths.

• Or fit deep decision tree and use CV to prune:

– Remove leaf nodes that don’t improve CV error.

• Popular implementations that have these tricks and others.

Cross-Validation Theory

• Does CV give unbiased estimate of test error?

– Yes!

• Since each data point is only used once in validation, expected validation error on
each data point is test error.

– But again, if you CV to select among models then it is no longer unbiased.

• What about variance of CV?

– Hard to characterize.

– CV variance on ‘n’ data points is worse than with a validation set of size ‘n’.

• But we believe it is close.

Handling Data Sparsity

• Do we need to store the full bag of words 0/1 variables?

– No: only need list of non-zero features for each e-mail.

– Math/model doesn’t change, but more efficient storage.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

1 1 0 0 0 1 …

Non-Zeroes

{1,2,5,…}

{5,6,…}

{2,3,4,…}

{1,2,6,…}

Less-Naïve Bayes

• Given features {x1,x2,x3,…,xd}, naïve Bayes approximates p(y|x) as:

• The assumption is very strong, and there are “less naïve” versions:

– Assume independence of all variables except up to ‘k’ largest ‘j’ where j < i.

• E.g., naïve Bayes has k=0 and with k=2 we would have:

• Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.

– Another practical variation is “tree-augmented” naïve Bayes.

Gaussian Discriminant Analysis

• Classifiers based on Bayes rule are called generative classifier:
– They often work well when you have tons of features.

– But they need to know p(xi | yi), probability of features given the class.
• How to “generate” features, based on the class label.

• To fit generative models, usually make BIG assumptions:
– Naïve Bayes (NB) for discrete xi:

• Assume that each variables in xi is independent of the others in xi given yi.

– Gaussian discriminant analysis (GDA) for continuous xi.
• Assume that p(xi | yi) follows a multivariate normal distribution.

• If all classes have same covariance, it’s called “linear discriminant analysis”.

Computing p(xi) under naïve Bayes

• Generative models don’t need p(xi) to make decisions.

• However, it’s easy to calculate under the naïve Bayes assumption:

