CPSC 340:
Machine Learning and Data Mining

Probabilistic Classification
Fall 2017



Admin

* Assignment O is due tonight: you should be almost done.
— 1 late day to hand it in Monday, 2 late days for Wednesday.

e Assignment 1 is coming Monday: start early.

* Important webpages:
— www.cs.ubc.ca/~schmidtm/Courses/340-F17

— WWW.piazza.com/ubc.ca/winterterm12017/cpsc340/home



http://www.cs.ubc.ca/~schmidtm/Courses/340-F17
http://www.piazza.com/ubc.ca/winterterm12017/cpsc340/home

Last Time: Training, Testing, and Validation

* Training step:
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* Prediction step:
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e What we are interested in is the test error:
— Error made by prediction step on new data.



Last Time: Fundamental Trade-Off

* We decomposed test error to get a fundamental trade-off:
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* E, .., goes down as model gets complicated: 9 dession e Sty

— Training error goes down as a decision tree gets deeper.

e ButkE goes up as model gets complicated:

approxr
— Training error becomes a worse approximation of test error.



Last Time: Validation Errorr

* Golden rule: we can’t look at test data during training.

* But we can approximate E,_,

with a validation error:

— Error on a set of training examples we “hid” during training.
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— Find the decision tree based on the “train” rows.
— Validation error is the error of the decision tree on the “validation” rows.



Should you trust them?

* Scenario 1:
— “I built a model based on the data you gave me.”
— “It classified your data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably not:
— They are reporting training error.
— This might have nothing to do with test error.
— E.g., they could have fit a very deep decision tree.
* Why ‘probably’?
— If they only tried a few very simple models, the 98% might be reliable.
— E.g., they only considered decision stumps with simple 1-variable rules.



Should you trust them?

e Scenario 2:

— “I built a model based on half of the data you gave me.”
— “It classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the validation error once.
— This is an unbiased approximation of the test error.
— Trust them if you believe they didn’t violate the golden rule.



Should you trust them?

* Scenario 3:
— “I' built 10 models based on half of the data you gave me.”
— “One of them classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:

— They computed the validation error a small number of times.

— Maximizing over these errors is a biased approximation of test error.
— But they only maximized it over 10 models, so bias is probably small.
— They probably know about the golden rule.



Should you trust them?

* Scenario 4.
— “I' built 1 billion models based on half of the data you gave me.”
— “One of them classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably not:
— They computed the validation error a huge number of times.
— Maximizing over these errors is a biased approximation of test error.
— They tried so many models, one of them is likely to work by chance.
* Why ‘probably’?
— If the 1 billion models were all extremely-simple, 98% might be reliable.



Should you trust them?

* Scenario 5:
— “I built 1 billion models based on the first third of the data you gave me.”
— “One of them classified the second third of the data with 98% accuracy.”
— “It also classified the last third of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the first validation error a huge number of times.
— But they had a second validation set that they only looked at once.
— The second validation set gives unbiased test error approximation.
— This is ideal, as long as they didn’t violate golden rule on the last third.
— And assuming you are using |ID data in the first place.



Validation Error and Optimization Bias

* Optimization bias is small if you only compare a few models:
— Best decision tree on the training set among depths, 1, 2, 3,..., 10.
— Risk of overfitting to validation set is low if we try 10 things.

e Optimization bias is large if you compare a lot of models:
— All possible decision trees of depth 10 or less.
— Here we’re using the validation set to pick between a billion+ models:

* Risk of overfitting to validation set is high: could have low validation error by chance.

— If you did this, you might want a second validation set to detect overfitting.



Cross-Validation (CV)

* |sn’t it wasteful to only use part of your data?

e 5-fold cross-validation:
— Train on 80% of the data, validate on the other 20%.
— Repeat this 5 more times with different splits, and average the score.
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Cross-Validation (CV)

 You can take this idea further:
— 10-fold cross-validation: train on 90% of data and validate on 10%.

e Repeat 10 times and average.

— Leave-one-out cross-validation: train on all but one training example.

* Repeat n times and average.

* Gets more accurate but more expensive with more folds.

— To choose depth we compute the cross-validation score for each depth.

* As before, if data is ordered then folds should be random splits.
— Randomize first, then split into fixed folds.



Cross-Validation Pseudo-Code
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(pause)



The “Best” Machine Learning Model

Decision trees are not always most accurate on test error.
What is the “best” machine learning model?

First we need to define generalization error:
— Test error restricted to new feature combinations (no x, from train set).

No free lunch theorem:

— There is no “best” model achieving the best generalization error for every
problem.

— If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.

This question is like asking which is “best” among “rock”, “paper”,
and “scissors”.



The “Best” Machine Learning Model

Implications of the lack of a “best” model:
— We need to learn about and try out multiple models.

So which ones to study in CPSC 3407

— We'll usually motivate each method by a specific application.
— But we’re focusing on models that have been effective in many applications.

Caveat of no free lunch (NFL) theorem:
— The world is very structured.

— Some datasets are more likely than others.
— Model A really could be better than model B on every real dataset in practice.
Machine learning research:

— Large focus on models that are useful across many applications.



Application: E-mail Spam Filtering

 Want a build a system that detects spam e-mails.
— Context: spam used to be a big problem.

o Gary <jaiwasie@mail.com>

to schmidt [«

» Jannie Keenan valberta  You are owed $24,718.11 1  Be careful with this message. Similar messages were used to steal people’s f

personal information.

» Abby ualberta  USB Drives with your Logo Hey.

Do you have a minute today?

Rosemarie Page Re: New request created with 1D: ##62 Are you interested to use our email marketing and lead generation
solutions?
We have worked on a number of projects and campaigns in many industries

Shawna Bulger RE: New request created with 1D: ##63 since 2007
Please reply today so we can go over options for you.
» Gary ualberta  Cooperation Iszﬁcseu;e we can help to grow your business soon by using our mailing

Best regards.
Gary
Contact: abelfong@sina.com

* Can we formulate as supervised learning?



Spam Filtering as Supervised Learning

* Collect alarge number of e-mails, gets users to label them.

_$ | Hi | CPSC | 340 | Vicodin | Offer | .
1 1 0 0 1 0 — 1
0 0 0 0 1 1 )
I 1 0 0 ) O
——

* We can use (y, = 1) if e-mail i’ is spam, (y, = 0) if e-mail is not spam.
e Extract features of each e-mail (like bag of words).
— (x; = 1) if word/phrase ‘j’ is in e-mail ¥/, (x; = 0) if it is not.



Feature Representation for Spam

* Are there better features than bag of words?

— We add bigrams (sets of two words):
e “CPSC 340", “wait list”, “special deal”.

— Or trigrams (sets of three words):

n  u /{4

* “Limited time offer”, “course registration deadline”, “you’re a winner”.

— We might include the sender domain:

e <sender domain == “mail.com”>.

— We might include regular expressions:

* <your first and last name>.

* Also, note that we only need list of non-zero features for each x..



Review of Supervised Learning Notation

 We have been using the notation ‘X" and ‘y’ for supervised learning:

| $ [ Hi|CPSC| 340 | Vicodin | Offer | .. |
1 1 0 0 1 0 B N N

sy X3 .
0O 0 O 0 1 ®/ 6\ -| 1
1 1 0 0 .2 /- @V—-——? Vs
* Xis matrix of all features, y is vector of all labels.

— We use y, for the label of object ‘i’ (element ‘i’ of ‘y’).
— We use x; for feature j’ of object ‘"

— We use x; as the list of features of object ‘i’ (row ‘i" of ‘X’).
* Sointhe abovex;=[011100...].



Probabilistic Classifiers

* For years, best spam filtering methods used naive Bayes.
— A probabilistic classifier based on Bayes rule.
— |t tends to work well with bag of words.
— Last year shown to improve on state of the art for CRISPR “gene editing” (link).

* Probabilistic classifiers model the conditional probability, p(y; | x:).
— “If a message has words x,, what is probability that message is spam?”

e C(Classify it has spam if probability of spam is higher than not spam:
— If p(y, = “spam” | x) > p(y, = “not spam” | x,)
* return “spam”.

— Else
* return “not spam”.


http://www.biorxiv.org/content/biorxiv/early/2016/12/02/078253.full.pdf

Spam Filtering with Bayes Rule

* To model conditional probability, naive Bayes uses Bayes rule:

F( Y) —_ 'ISPGM" | X;/ = ()()(I '\/' = ”’(‘om,?/)(% — "S/om\")
: plxi)

* So we need to figure out three types of terms:
— Marginal probabilities p(y,) that an e-mail is spam.
— Marginal probability p(x.) that an e-mail has the set of words x..
— Conditional probability P(x; | y;) that a spam e-mail has the words x..

* And the same for non-spam e-mails.



Spam Filtering with Bayes Rule

e What do these terms mean?

ALL E-MAILS

(including duplicates)




Spam Filtering with Bayes Rule

| i _ 1 n 1 "
F( \/.I: 'SPam |x,~> — E()(I ,\/, - Sf‘“"" )/)(y, = ‘S‘/mm)
PLx)
* p(y, = “spam”) is probability that a random e-mail is spam.
— This is easy to approximate from data: use the proportion in your data.
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This is a “maximum likelihood estimate”, a
concept we’ll discuss in detail later. If you're
interested in a proof, see here.



http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

Spam Filtering with Bayes Rule

P( y.' = '|§'>am“ | X,‘> = F()(I , \/'_ - I'Sf“""'\>/)(y,‘ — "S/Jam“)
- Plx)

* p(x;) is probability that a random e-mail has features x::

— This is hard to approximate (there are so many possible e-mails).
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Spam Filtering with Bayes Rule

P( y'l = 'ISPO'm“ | X}> = F()(I , v, = /'Sf,am'?/)(y'_ — "S/oam")
: plxi)

* p(x;) is probability that a random e-mail has features x::

— This is hard to approximate (there are so many possible e-mails),

but it turns out we can ignore it:
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Spam Filtering with Bayes Rule
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 Also hard to estimate.
* And we need it.




Nalve Bayes

* Naive Bayes makes a big assumption to make things easier:
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* We assume all features x; are conditionally independent give label y..
— Once you know it’s spam, probability of “vicodin” doesn’t depend on “CPSC 340”.
— Definitely not true, but sometimes a good approximation.

* And now we only need easy quantities like p(“vicodin” = 1| y. = “spam”).



Naive Bayes

* p(“vicodin” =1 | “spam” = 1) is probability of seeing “vicodin” in spam.

: : e Easy to estimate:
Vicodin Y o
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Nalve Bayes

* Naive Bayes more formally:
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* Post-lecture slides: how to train/test by hand on a simple example.



Summary

Optimization bias: using a validation set too much overfits.
Cross-validation: allows better use of data to estimate test error.
No free lunch theorem: there is no “best” ML model.
Probabilistic classifiers: try to estimate p(y, | x;).

Naive Bayes: simple probabilistic classifier based on counting.
— Uses conditional independence assumptions to make training practical.

Next time:

— A “best” machine learning model as ‘n’ goes to .



Naive Bayes Training Phase

* Training a naive Bayes model:
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Naive Bayes Training Phase

* Training a naive Bayes model:
‘. Set N to the number ot Times (y‘-: 5).
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Naive Bayes Training Phase NNETES n=b

* Training a naive Bayes model:
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Naive Bayes Training Phase .

* Training a naive Bayes model:

‘. Set N to the number ot Times (y‘-: 5).
. Estimate f(Y": c) a5 N,
N
5 Sef ncj'k as The numbtt oF fimes (yi: C) X;)'- /<) Y
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Naive Bayes Training Phase o= e n=b

To
il

* Training a naive Bayes model: ]
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

Given o Ces] Cxaw.r’& )?,/ we want to find the ¢ VV\aX/'Wl/.Z/'/\? P(g I%:C>
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

C@msiclfr )/(V:CI /:) /N h»fi c(of/n Sef —)
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Avoiding Underflow

* During the prediction, the probability can underflow:
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Back to Decision Trees

Instead of validation set, you can use CV to select tree depth.

But you can also use these to decide whether to split:
— Don’t split if validation/CV error doesn’t improve.
— Different parts of the tree will have different depths.

Or fit deep decision tree and use CV to prune:
— Remove leaf nodes that don’t improve CV error.

Popular implementations that have these tricks and others.



Cross-Validation Theory

Does CV give unbiased estimate of test error?
— Yes!

e Since each data point is only used once in validation, expected validation error on
each data point is test error.

— But again, if you CV to select among models then it is no longer unbiased.

What about variance of CV?

— Hard to characterize.
— CV variance on ‘n’ data points is worse than with a validation set of size ‘n’.

e But we believe it is close.



Handling Data Sparsity

* Do we need to store the full bag of words 0/1 variables?

— No: only need list of non-zero features for each e-mail.

| $ | Hi | CPSC | 340 Vicodin | Offer | .
1 1 0 1 0

0 {1,2,5,.}
0 0 o0 0 1 1 V2 {5,6,..
0 1 1 1 0 0 {2,34,..}
1 1 0 0 0 1 {1,2,6,..}

— Math/model doesn’t change, but more efficient storage.



Less-Nalve Bayes

e Given features {x1,x2,x3,...,xd}, naive Bayes approximates p(y|x) as:
ply Lriyny ) o ply o (s xly) oy produc vule applied vepeatelly

— r (y) 4 (X‘ '\/>r()(2 I)(,)y>f()(} I)(Z)XI )\/) S ID(XJ IX[7)(]) )XJ—-/)Y)
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 The assumption is very strong, and there are “less naive” versions:
— Assume independence of all variables except up to ‘k’ largest ‘j” where j < i.

e E.g., naive Bayes has k=0 and with k=2 we would have:

~ ‘)[y) ()(X, "/) r(XJ ’X,7y)r()(3 'X) 7)(, 7)’)/3(&; ,)(;)X2>y> - - /) ()/J /Xl.z) XJ_/))/)
* Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.

— Another practical variation is “tree-augmented” naive Bayes.



Gaussian Discriminant Analysis

* Classifiers based on Bayes rule are called generative classifier:
— They often work well when you have tons of features.

— But they need to know p(x; | y.), probability of features given the class.
* How to “generate” features, based on the class label.

* To fit generative models, usually make BIG assumptions:

— Naive Bayes (NB) for discrete x::
* Assume that each variables in x; is independent of the others in x; given y..

— Gaussian discriminant analysis (GDA) for continuous x..
* Assume that p(x. | y,) follows a multivariate normal distribution.
* If all classes have same covariance, it’s called “linear discriminant analysis”.



Computing p(x;) under naive Bayes

* Generative models don’t need p(x;) to make decisions.
* However, it’s easy to calculate under the naive Bayes assumption:

G)(Xi) = F(}(,)/ L? (/Marqul;gq?‘lon /‘u/¢>
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