CPSC 340:
Machine Learning and Data Mining

Probabilistic Classification
Fall 2017



Admin

* Assignment O is due tonight: you should be almost done.
— 1 late day to hand it in Monday, 2 late days for Wednesday.

e Assignment 1 is coming Monday: start early.

* Important webpages:
— www.cs.ubc.ca/~schmidtm/Courses/340-F17

— WWW.piazza.com/ubc.ca/winterterm12017/cpsc340/home



http://www.cs.ubc.ca/~schmidtm/Courses/340-F17
http://www.piazza.com/ubc.ca/winterterm12017/cpsc340/home

Last Time: Training, Testing, and Validation

* Training step:

1\

_Lnfo:ff set of 'n' iraining examples x; wiTh | abels )/
J L

OV\.}‘)\A‘}( (O ng_(_)_cl_e_l ')'La"/‘ Mqr_g ‘FY'OM Qr‘)i"f‘al’“}/ X, ‘}U Qa y,

* Prediction step:

‘IV\@\A*‘ Qﬂ[ of /() TM )?,/ Ov\cl 0 M_g_cie_/,
O\A“'Q\A'\"‘ Vrcé\c*im\j )/’\, {Or 'H'e 'f€5+in9 €Xawlrlfi

e What we are interested in is the test error:
— Error made by prediction step on new data.



Last Time: Fundamental Trade-Off

* We decomposed test error to get a fundamental trade-off:

E’t est - rf”’" E]Lroun

/) t?)__/ frrar ar"roX'W\ﬂ lw* 'I»oww\) \ 1

eVror ercor

fcs‘[ error

— Where E =(E...—E

approx

test train)'

,I
,' géﬂfrrok

/ /'Trmu) errw

* E, .., goes down as model gets complicated: 9 dession e Sty

— Training error goes down as a decision tree gets deeper.

e ButkE goes up as model gets complicated:

approxr
— Training error becomes a worse approximation of test error.



Last Time: Validation Errorr

* Golden rule: we can’t look at test data during training.

* But we can approximate E,_,

with a validation error:

— Error on a set of training examples we “hid” during training.

~ ~

g
—
e v o a m— v e T s e e -

e’ —

— ‘\
N N
g 'J'fo\m

)

'va ,iéq*ion“

L

— Find the decision tree based on the “train” rows.
— Validation error is the error of the decision tree on the “validation” rows.



Should you trust them?

* Scenario 1:
— “I built a model based on the data you gave me.”
— “It classified your data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably not:
— They are reporting training error.
— This might have nothing to do with test error.
— E.g., they could have fit a very deep decision tree.
* Why ‘probably’?
— If they only tried a few very simple models, the 98% might be reliable.
— E.g., they only considered decision stumps with simple 1-variable rules.



Should you trust them?

e Scenario 2:

— “I built a model based on half of the data you gave me.”
— “It classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the validation error once.
— This is an unbiased approximation of the test error.
— Trust them if you believe they didn’t violate the golden rule.



Should you trust them?

* Scenario 3:
— “I' built 10 models based on half of the data you gave me.”
— “One of them classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:

— They computed the validation error a small number of times.

— Maximizing over these errors is a biased approximation of test error.
— But they only maximized it over 10 models, so bias is probably small.
— They probably know about the golden rule.



Should you trust them?

* Scenario 4.
— “I' built 1 billion models based on half of the data you gave me.”
— “One of them classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably not:
— They computed the validation error a huge number of times.
— Maximizing over these errors is a biased approximation of test error.
— They tried so many models, one of them is likely to work by chance.
* Why ‘probably’?
— If the 1 billion models were all extremely-simple, 98% might be reliable.



Should you trust them?

* Scenario 5:
— “I built 1 billion models based on the first third of the data you gave me.”
— “One of them classified the second third of the data with 98% accuracy.”
— “It also classified the last third of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the first validation error a huge number of times.
— But they had a second validation set that they only looked at once.
— The second validation set gives unbiased test error approximation.
— This is ideal, as long as they didn’t violate golden rule on the last third.
— And assuming you are using |ID data in the first place.



Validation Error and Optimization Bias

* Optimization bias is small if you only compare a few models:
— Best decision tree on the training set among depths, 1, 2, 3,..., 10.
— Risk of overfitting to validation set is low if we try 10 things.

e Optimization bias is large if you compare a lot of models:
— All possible decision trees of depth 10 or less.
— Here we’re using the validation set to pick between a billion+ models:

* Risk of overfitting to validation set is high: could have low validation error by chance.

— If you did this, you might want a second validation set to detect overfitting.



Cross-Validation (CV)

* |sn’t it wasteful to only use part of your data?

e 5-fold cross-validation:
— Train on 80% of the data, validate on the other 20%.
— Repeat this 5 more times with different splits, and average the score.

7 fld"
N "ﬁoll" 2
P [ TR
vf ! fu'J q
Fou“C

- — T~ O

,Trm"v\ on ole il Z) Lf{ COW‘rUfQ Cvror On F()u g,

2 lrm(w on F lJS E' 2 3 (QM‘A"‘C LYrom oA (ou Ll
s St
3, quln or F’ S YD S (()M"Vl{f erroy Qn ‘F\)U 3

. Tak( mv\ef_%f O'F 1}\9 § errorsS as o\rpfoximo\’ﬁoﬂ 6F ]lefjf Creor



Cross-Validation (CV)

 You can take this idea further:
— 10-fold cross-validation: train on 90% of data and validate on 10%.

e Repeat 10 times and average.

— Leave-one-out cross-validation: train on all but one training example.

* Repeat n times and average.

* Gets more accurate but more expensive with more folds.

— To choose depth we compute the cross-validation score for each depth.

* As before, if data is ordered then folds should be random splits.
— Randomize first, then split into fixed folds.



Cross-Validation Pseudo-Code

o ¢ hpoSe J(]»_WL_L\
for depth in 1:20

COM(JV\TQ Crocj"wlic‘a“ns(m'
I'CJ[V‘”‘ (Jerﬂ\ wi“\ }\iyl\ff"f Sc0/€

TO (O/‘mee 5-{old Crory'\/ql'.,f,,,]’;.,,. Score

‘(or fold in [|iT

Train §0% That cloé‘)nUF M( }\/\JP {all
"'PsT on ~pﬁ L

rf’*wh averaje fr)‘/‘ ofrror

/Vo'log:

— This fils oo M00/€/S’,,
(20 Aeﬂm 7iP"PJ S“G/c/s)

- )Ve Can ovie (“\/P'/a)c>
Score for each sf The
20 C{(’f~“’\)‘

— \/SL “is ScCore 'fo Pic” Jgﬂ\




(pause)



The “Best” Machine Learning Model

Decision trees are not always most accurate on test error.
What is the “best” machine learning model?

First we need to define generalization error:
— Test error restricted to new feature combinations (no x, from train set).

No free lunch theorem:

— There is no “best” model achieving the best generalization error for every
problem.

— If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.

This question is like asking which is “best” among “rock”, “paper”,
and “scissors”.



The “Best” Machine Learning Model

Implications of the lack of a “best” model:
— We need to learn about and try out multiple models.

So which ones to study in CPSC 3407

— We'll usually motivate each method by a specific application.
— But we’re focusing on models that have been effective in many applications.

Caveat of no free lunch (NFL) theorem:
— The world is very structured.

— Some datasets are more likely than others.
— Model A really could be better than model B on every real dataset in practice.
Machine learning research:

— Large focus on models that are useful across many applications.



Application: E-mail Spam Filtering

 Want a build a system that detects spam e-mails.
— Context: spam used to be a big problem.

o Gary <jaiwasie@mail.com>

to schmidt [«

» Jannie Keenan valberta  You are owed $24,718.11 1  Be careful with this message. Similar messages were used to steal people’s f

personal information.

» Abby ualberta  USB Drives with your Logo Hey.

Do you have a minute today?

Rosemarie Page Re: New request created with 1D: ##62 Are you interested to use our email marketing and lead generation
solutions?
We have worked on a number of projects and campaigns in many industries

Shawna Bulger RE: New request created with 1D: ##63 since 2007
Please reply today so we can go over options for you.
» Gary ualberta  Cooperation Iszﬁcseu;e we can help to grow your business soon by using our mailing

Best regards.
Gary
Contact: abelfong@sina.com

* Can we formulate as supervised learning?



Spam Filtering as Supervised Learning

* Collect alarge number of e-mails, gets users to label them.

_$ | Hi | CPSC | 340 | Vicodin | Offer | .
1 1 0 0 1 0 — 1
0 0 0 0 1 1 )
I 1 0 0 ) O
——

* We can use (y, = 1) if e-mail i’ is spam, (y, = 0) if e-mail is not spam.
e Extract features of each e-mail (like bag of words).
— (x; = 1) if word/phrase ‘j’ is in e-mail ¥/, (x; = 0) if it is not.



Feature Representation for Spam

* Are there better features than bag of words?

— We add bigrams (sets of two words):
e “CPSC 340", “wait list”, “special deal”.

— Or trigrams (sets of three words):

n  u /{4

* “Limited time offer”, “course registration deadline”, “you’re a winner”.

— We might include the sender domain:

e <sender domain == “mail.com”>.

— We might include regular expressions:

* <your first and last name>.

* Also, note that we only need list of non-zero features for each x..



Review of Supervised Learning Notation

 We have been using the notation ‘X" and ‘y’ for supervised learning:

| $ [ Hi|CPSC| 340 | Vicodin | Offer | .. |
1 1 0 0 1 0 B N N

sy X3 .
0O 0 O 0 1 ®/ 6\ -| 1
1 1 0 0 .2 /- @V—-——? Vs
* Xis matrix of all features, y is vector of all labels.

— We use y, for the label of object ‘i’ (element ‘i’ of ‘y’).
— We use x; for feature j’ of object ‘"

— We use x; as the list of features of object ‘i’ (row ‘i" of ‘X’).
* Sointhe abovex;=[011100...].



Probabilistic Classifiers

* For years, best spam filtering methods used naive Bayes.
— A probabilistic classifier based on Bayes rule.
— |t tends to work well with bag of words.
— Last year shown to improve on state of the art for CRISPR “gene editing” (link).

* Probabilistic classifiers model the conditional probability, p(y; | x:).
— “If a message has words x,, what is probability that message is spam?”

e C(Classify it has spam if probability of spam is higher than not spam:
— If p(y, = “spam” | x) > p(y, = “not spam” | x,)
* return “spam”.

— Else
* return “not spam”.


http://www.biorxiv.org/content/biorxiv/early/2016/12/02/078253.full.pdf

Spam Filtering with Bayes Rule

* To model conditional probability, naive Bayes uses Bayes rule:

F( Y) —_ 'ISPGM" | X;/ = ()()(I '\/' = ”’(‘om,?/)(% — "S/om\")
: plxi)

* So we need to figure out three types of terms:
— Marginal probabilities p(y,) that an e-mail is spam.
— Marginal probability p(x.) that an e-mail has the set of words x..
— Conditional probability P(x; | y;) that a spam e-mail has the words x..

* And the same for non-spam e-mails.



Spam Filtering with Bayes Rule

e What do these terms mean?

ALL E-MAILS

(including duplicates)




Spam Filtering with Bayes Rule

| i _ 1 n 1 "
F( \/.I: 'SPam |x,~> — E()(I ,\/, - Sf‘“"" )/)(y, = ‘S‘/mm)
PLx)
* p(y, = “spam”) is probability that a random e-mail is spam.
— This is easy to approximate from data: use the proportion in your data.

ol wly 1:‘_ gﬁ“"‘" M&fﬁ';%lﬁf
NOT iO(YI.- S(’wm >~ HW(OWLGI mtss@jej

SPAM

SPAM

This is a “maximum likelihood estimate”, a
concept we’ll discuss in detail later. If you're
interested in a proof, see here.



http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

Spam Filtering with Bayes Rule

P( y.' = '|§'>am“ | X,‘> = F()(I , \/'_ - I'Sf“""'\>/)(y,‘ — "S/Jam“)
- Plx)

* p(x;) is probability that a random e-mail has features x::

— This is hard to approximate (there are so many possible e-mails).

AV

(X')"; e ~mails wilh features X;
|

P #e-mails fotal
ﬁ




Spam Filtering with Bayes Rule

P( y'l = 'ISPO'm“ | X}> = F()(I , v, = /'Sf,am'?/)(y'_ — "S/oam")
: plxi)

* p(x;) is probability that a random e-mail has features x::

— This is hard to approximate (there are so many possible e-mails),

but it turns out we can ignore it:
1 I

/VO\ive Ba\/w re‘furn; Srom it do(y',:”slqu/l I >(,’> > /0(\/,: /}, 5/’”*”\\\})(,-)

B\/ &0\\ D Y‘V\IQ ‘h’\b MNEaNS f)’(&i\’ﬁ:“ﬁmm“)f (y, = ”Sfﬁmj 7 /97()(; ’y;’hnofslmm‘%,‘ 'M,J)
'0 (X)) F ()‘,‘)

/\/\ (_,\H\bol\/ boﬂn < A{) L,\/ '0‘)(]) .
f)()(l l\/’,:,IS/ﬂM\\)F (Y‘ = IIS,“M,\> 7 /Q(X, ’y;:h/ld)fmm\%’.f':,u/,,:)



Spam Filtering with Bayes Rule
F/_ SPam |X,>-— r )( ,\/ - Sf‘“"" >/>(y,:

()( l y' = 5 am ) —
5 )
/ F': g_ﬁﬂv_.v‘ M95509 D) Wlﬂ\ ]COm‘chLS

)

ﬁ S pam messoneJ

 Also hard to estimate.
* And we need it.




Nalve Bayes

* Naive Bayes makes a big assumption to make things easier:

C}’\g {(a) \/i(@c!}r\) C 'DSC BL{() Ig‘loqm> //\; {3(;\3”0 lfloam)P(vic oa(/'l\ Ig'/qm)'o((fS'( ?L/D/rfqm)
HARD QMS\/ gasy easy

* We assume all features x; are conditionally independent give label y..
— Once you know it’s spam, probability of “vicodin” doesn’t depend on “CPSC 340”.
— Definitely not true, but sometimes a good approximation.

* And now we only need easy quantities like p(“vicodin” = 1| y. = “spam”).



Naive Bayes

* p(“vicodin” =1 | “spam” = 1) is probability of seeing “vicodin” in spam.

: : e Easy to estimate:
Vicodin Y o
(V’I(OJ:M:’ )5,7”;.\:)7: # 5,ﬁum Mt.(saf,c ov/ vi (m(i

NOT f L X
SPAM

SPAM




Nalve Bayes

* Naive Bayes more formally:

P()ﬁ/ Xi) = ()(Xi')’i >[>()’,') (+irst use @ayf> rw/e>

(xi)
> P(X Fly, f ) (“(JFV\0M)V\Q\}0F A0f>p\‘f Ma#{/‘)
d
((o/\Jl‘hbﬂal Mct‘(ff’mim[f
J—II [ wy > O\SSMMF"{ior\>
Only needs €asy
‘ProLa\orln‘Iey

* Post-lecture slides: how to train/test by hand on a simple example.



Summary

Optimization bias: using a validation set too much overfits.
Cross-validation: allows better use of data to estimate test error.
No free lunch theorem: there is no “best” ML model.
Probabilistic classifiers: try to estimate p(y, | x;).

Naive Bayes: simple probabilistic classifier based on counting.
— Uses conditional independence assumptions to make training practical.

Next time:

— A “best” machine learning model as ‘n’ goes to .



Naive Bayes Training Phase

* Training a naive Bayes model:

S O O = O

l@l—‘@@@b—‘-b—‘@b—‘b—‘l

’y:

RS




Naive Bayes Training Phase

* Training a naive Bayes model:
‘. Set N to the number ot Times (y‘-: 5).

mF ) R RO RRORO

= O OO O -




b e ”\:é

Naive Bayes Training Phase oy =L
* Training a naive Bayes model: 01
‘. Sef N to the number of Times (y,':0>. 1 1
, =Y m 0 0
;1. Estinmate f()",“ 07 S Dﬁ? 11
1 1
X =10 o
1 0
1 0
1 1
_1 0_
- 0)=4 N
f)((' 0) Téé/— 0



Naive Bayes Training Phase NNETES n=b

* Training a naive Bayes model:

0 [T
‘. Seft N ’ra the number ot Times (y,':&) 1 h
0 0
- oy = < N B
2_ E<ti fc’ f(y, 07 a _ﬁ? 1[1
’5, g(,‘r ﬂcj'k as The y\wwtﬂ" of fimes (yi: C) Xb':k) X — (1) [1) :
1 0 J
1 0
1 1 "
-1 0-
=0)=4 No
f)( ! ) loé/



Naive Bayes Training Phase .

* Training a naive Bayes model:

‘. Set N to the number ot Times (y‘-: 5).
. Estimate f(Y": c) a5 N,
N
5 Sef ncj'k as The numbtt oF fimes (yi: C) X;)'- /<) Y

L. Esqimate IO(Xi:): /(7 Vi <¢) as %Ji




Naive Bayes Training Phase o= e n=b

To
il

* Training a naive Bayes model: ]

0 (T
‘, Sef N Jra The numbrr of Fimes (y,':0>. 1 h
0 0
s ""mmff’ ( = 67 at D_@ —
4 Est P - 1 [1
’S gc"' ncJ'k as The ,qulﬂf of fimes (yi: C) Xb':k) _ (1] [1)
1 Estimate plxmkyy = c) as Dgr 10
1 0
5 Use that pUx=k |y =¢)= plushyi=c) L
plyi=c) 10
_ V‘cjk/n — Nesw L
2 Ly
(% c b\iy Zj (":0}:
F(X;F’ |7.‘=’>=Z‘—’3 F |




Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

Given o Ces] Cxaw.r’& )?,/ we want to find the ¢ VV\aX/'Wl/.Z/'/\? P(g I%:C>

UAJ” The M o«sfum[)fm“ we can maximzfl)
‘3(7/\ C'Y? >'q _T[F X,J ,y—cﬂ'ﬂy, c,)



Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

Given @ Ces cxamf’a )?,/ we st frelfu‘(m 7/"1‘ 3, The e V"\ﬂX"""’/.Z""j P()Z I%:C>

UAJ” The M o«sfum[)fm“ we can maximzfl)
‘3(7/\ C'Y? >'q _T[F X,J ,y—cﬂ'ﬂy, c,)



Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

C@msiclfr )/(\::CI /:] /N h»fi c(of/n Sef —)

S O O = O

IOD—‘ODOHP—‘OP—‘P—‘l

’y:

RS




Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

C@msiclfr )/(V:CI /:) /N h»fi c(of/n Sef —)

770150 < (511 520 pliy = 1 ]5:=0)pl:50)
- (0257 (OL/) 0| x-=

'+—1+—1+—1+—1C>+—*r—tc>r—l©'

l@l—"@@@i—‘b—‘@b—‘i—‘l
.



Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
C@msiclfr )/(V:CI /:) % T his c(af/n sel —
770150 < (511 520 pliy = 1 ]5:=0)pl:50)
- (0257 (04) 0| x-=
\/\'lw)ok‘) I/ /)I’J(X,),}/ /) (/-—O

(
P s 05 (0ck) (00)=02

lb—tb—tb—tb—LCJHr—LCDr—lO'

.

IOI—‘OOOP—‘P—‘QP—‘F—‘I



Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

C@msiclfr )/(V:CI /:) /N h»fi c(of/n Sef —)

770150 < (511 520 pliy = 1 ]5:=0)pl:50)

= (0257 (OL/) 0| x-= y =

\/\ 'lp’)(ﬂ‘) I/ /),’J{Xg ,)/ /) (/")

(i
P s 05 (0ck) (00)=02

'+—1+—1+—1+—1C>+—*r—tc>r—l©'

l@l—"@@@i—‘b—‘@b—‘i—‘l
.

SiV\CC F(V‘:’ ))?:) 5 éiwrr "'Aan F(‘/\:O , )/(\,,)> Wa;V{ Bal/ﬂ) f/’a”r{idl) 9‘:/

(00/\\ * $ m 10 ‘ lof(am;{ wc\r’\: ',jMWn? r@:\)



Avoiding Underflow

* During the prediction, the probability can underflow:

‘D(Yijc"x> O —T[F X,)ly,—- Lﬂ t
L~
N 0 Ahee e < 5o The

Pfaclulcf jth \/C/Z S '/
e Standard fix is to (equivalently) maximize the logarithm of the probability:
Rembvr flat |09(0\b7: 109 (a)+lo9(b) 50 [09 (T q~) = 2 |09 (a‘.)

gll/\Ce Ioﬁ is mone foniC_ 7[[“ ¢ I’V‘GXMIZIV\ﬂ )0(7 Ch) 0"50 MUX i1 78S 09 r(/ C|)(>

50 maxmize '”9( 1T Lplxs ly= 03 pbr0)= 2'03 plrs 1z O laflye)



Back to Decision Trees

Instead of validation set, you can use CV to select tree depth.

But you can also use these to decide whether to split:
— Don’t split if validation/CV error doesn’t improve.
— Different parts of the tree will have different depths.

Or fit deep decision tree and use CV to prune:
— Remove leaf nodes that don’t improve CV error.

Popular implementations that have these tricks and others.



Cross-Validation Theory

Does CV give unbiased estimate of test error?
— Yes!

e Since each data point is only used once in validation, expected validation error on
each data point is test error.

— But again, if you CV to select among models then it is no longer unbiased.

What about variance of CV?

— Hard to characterize.
— CV variance on ‘n’ data points is worse than with a validation set of size ‘n’.

e But we believe it is close.



Handling Data Sparsity

* Do we need to store the full bag of words 0/1 variables?

— No: only need list of non-zero features for each e-mail.

| $ | Hi | CPSC | 340 Vicodin | Offer | .
1 1 0 1 0

0 {1,2,5,.}
0 0 o0 0 1 1 V2 {5,6,..
0 1 1 1 0 0 {2,34,..}
1 1 0 0 0 1 {1,2,6,..}

— Math/model doesn’t change, but more efficient storage.



Less-Nalve Bayes

e Given features {x1,x2,x3,...,xd}, naive Bayes approximates p(y|x) as:
ply Lriyny ) o ply o (s xly) oy produc vule applied vepeatelly

— r (y) 4 (X‘ '\/>r()(2 I)(,)y>f()(} I)(Z)XI )\/) S ID(XJ IX[7)(]) )XJ—-/)Y)
/\/6 'o(\/> f()(, "/) ’0(/2 ’y>r()/5 Iy) ,a(XO/ ,y> (ha5v€ ﬂfﬂy«d ﬂs)ww'ﬂ'}d")
 The assumption is very strong, and there are “less naive” versions:
— Assume independence of all variables except up to ‘k’ largest ‘j” where j < i.

e E.g., naive Bayes has k=0 and with k=2 we would have:

~ ‘)[y) ()(X, "/) r(XJ ’X,7y)r()(3 'X) 7)(, 7)’)/3(&; ,)(;)X2>y> - - /) ()/J /Xl.z) XJ_/))/)
* Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.

— Another practical variation is “tree-augmented” naive Bayes.



Gaussian Discriminant Analysis

* Classifiers based on Bayes rule are called generative classifier:
— They often work well when you have tons of features.

— But they need to know p(x; | y.), probability of features given the class.
* How to “generate” features, based on the class label.

* To fit generative models, usually make BIG assumptions:

— Naive Bayes (NB) for discrete x::
* Assume that each variables in x; is independent of the others in x; given y..

— Gaussian discriminant analysis (GDA) for continuous x..
* Assume that p(x. | y,) follows a multivariate normal distribution.
* If all classes have same covariance, it’s called “linear discriminant analysis”.



Computing p(x;) under naive Bayes

* Generative models don’t need p(x;) to make decisions.
* However, it’s easy to calculate under the naive Bayes assumption:

G)(Xi) = F(}(,)/ L? (/Marqul;gq?‘lon /‘u/¢>

Z P<Xl l)/ c) (y (,) ([ch)dmcf rm/¢>

i E ” r;()() I/ C)] /y C) (y\a\»e g”)/f’f aﬁ’“”\,ﬂf“‘)

h/*/

”«Se Gre ﬂ\e ‘,uwh‘/ws
wé (aw\rufe Ju/ln9 Trainm9.



