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Admin

• Assignment 0 is due Friday: you should be almost done.

• Waiting list people: you should be registered.
– You may be e-mailed about prereqs, follow instructions to stay registered.

• Tutorials:
– If sections are full, sign up for T1Z (doesn’t conflict with anything).

• Important webpages:
– www.cs.ubc.ca/~schmidtm/Courses/340-F17

– www.piazza.com/ubc.ca/winterterm12017/cpsc340/home

– https://www.cs.ubc.ca/getacct

• Auditing: message me on Piazza if you want to audit.
– Bring your forms to me in class or instructor office hours.

http://www.cs.ubc.ca/~schmidtm/Courses/340-F17
http://www.piazza.com/ubc.ca/winterterm12017/cpsc340/home
https://www.cs.ubc.ca/getacct


Last Time: Supervised Learning Notation

• Feature matrix ‘X’ has rows as objects, columns as features.
– xij is feature ‘j’ for object ‘i’ (quantity of food ‘j’ on day ‘i’).

– xi is the list of all features for object ‘i’ (all the quantities on day ‘i’).

– xj is column ‘j’ of the matrix (the value of feature ‘j’ across all objects). 

• Label vector ‘y’ contains the labels of the objects.
– yi is the label of object ‘i’ (1 for “sick”, 0 for “not sick”).

Egg Milk Fish Wheat Shellfish Peanuts

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1



Supervised Learning Application

• We motivated supervised learning by the “food allergy” example.

• But we can use supervised learning for any input:output mapping.

– E-mail spam filtering.

– Optical character recognition on scanners.

– Recognizing faces in pictures.

– Recognizing tumours in medical images.

– Speech recognition on phones.

– Your problem in industry/research?



Motivation: Determine Home City

• We are given data from 248 homes.

• For each home/object, we have these features:

– Elevation.

– Year.

– Bathrooms

– Bedrooms.

– Price.

– Square feet.

• Goal is to build a program that predicts SF or NY.

This example and images of it come from:
http://www.r2d3.us/visual-intro-to-machine-learning-part-1



Plotting Elevation



Simple Decision Stump



Scatterplot Array



Scatterplot Array



Plotting Elevation and Price/SqFt



Simple Decision Tree Classification



Simple Decision Tree Classification



How does the depth affect accuracy?

This is a good start (> 75% accuracy).



How does the depth affect accuracy?

Start splitting the data recursively…



How does the depth affect accuracy?

Accuracy keeps increasing as we add depth.



How does the depth affect accuracy?

Eventually, we can perfectly classify all of our data.



Training vs. Testing Error

• With this decision tree, ‘training accuracy’ is 1.
– It perfectly labels the data we used to make the tree.

• We are now given features for 217 new homes.

• What is the ‘testing accuracy’ on the new data?
– How does it do on data not used to make the tree?

• Overfitting: lower accuracy on new data.
– Our rules got too specific to our exact training dataset.



Supervised Learning Notation

• We are given training data where we know labels:

• But there is also testing data we want to label:

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

X = y = 

Egg Milk Fish Wheat Shellfish Peanuts …

0.5 0 1 0.6 2 1

0 0.7 0 1 0 0

3 1 0 0.5 0 0

Sick?

?

?

?

 𝑋=  𝑦= 



Supervised Learning Notation
• Typical supervised learning steps:

1. Build model based on training data X and y.

2. Model makes predictions  𝑦 on test data  𝑋.

• Instead of training error, consider test error: 

– Are predictions  𝑦 similar to true unseen labels  𝑦?



Goal of Machine Learning

• In machine learning:

– What we care about is the test error!

• Midterm analogy:

– The training error is the practice midterm.

– The test error is the actual midterm.

– Goal: do well on actual midterm, not the practice one.

• Memorization vs learning:

– Can do well on training data by memorizing it.

– You’ve only learned if you can do well in new situations.



Golden Rule of Machine Learning

• Even though what we care about is test error:

– THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY.

• We’re measuring test error to see how well we do on new data:

– If used during training, doesn’t measure this.

– You can start to overfit if you use it during training.

– Midterm analogy: you are cheating on the test.



Golden Rule of Machine Learning

• Even though what we care about is test error:

– THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY.

http://www.technologyreview.com/view/538111/why-and-how-baidu-cheated-an-artificial-intelligence-test/



Golden Rule of Machine Learning

• Even though what we care about is test error:

– THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY.

• You also shouldn’t change the test set to get the result you want.

– http://blogs.sciencemag.org/pipeline/archives/2015/01/14/the_dukepotti_scandal_from_the_inside

https://www.cbsnews.com/news/deception-at-duke-fraud-in-cancer-care/

http://blogs.sciencemag.org/pipeline/archives/2015/01/14/the_dukepotti_scandal_from_the_inside


Is Learning Possible?

• Does training error say anything about test error?

– In general, NO: Test data might have nothing to do with training data.

– E.g., adversary takes training data and flips all labels.

• In order to learn, we need assumptions:

– The training and test data need to be related in some way.

– Most common assumption: independent and identically distributed (IID).

Egg Milk Fish

0 0.7 0

0.3 0.7 1

0.3 0 0

Sick?

1

1

0

X = y = 

Egg Milk Fish

0 0.7 0

0.3 0.7 1

0.3 0 0

Sick?

0

0

1

Xtest = ytest = 



IID Assumption

• Training/test data is independent and identically distributed (IID) if:
– All objects come from the same distribution (identically distributed).

– The object are sampled independently (order doesn’t matter).

• Examples in terms of cards:
– Pick a card, put it back in the deck, re-shuffle, repeat.

– Pick a card, put it back in the deck, repeat.

– Pick a card, don’t put it back, re-shuffle, repeat.

Age Job? City Rating Income

23 Yes Van A 22,000.00

23 Yes Bur BBB 21,000.00

22 No Van CC 0.00

25 Yes Sur AAA 57,000.00



IID Assumption and Food Allergy Example

• Is the food allergy data IID?

– Do all the objects come from the same distribution? 

– Does the order of the objects matter?

• No! 

– Being sick might depend on what you ate yesterday (not independent).

– Your eating habits might changed over time (not identically distributed).

• What can we do about this?

– Just ignore that data isn’t IID and hope for the best?

– For each day, maybe add the features from the previous day?

– Maybe add time as an extra feature?



Learning Theory

• Why does the IID assumption make learning possible?

– Patterns in training examples are likely to be the same in test examples.

• The IID assumption is rarely true:

– But it is often a good approximation.

– There are other possible assumptions.

• Learning theory explores how training error is related to test error.

• We’ll look at a simple example, using this notation:

– Etrain is the error on training data.

– Etest is the error on testing data.



Fundamental Trade-Off

• Start with Etest = Etest, then add and subtract Etrain on the right:

• How does this help?

– If Eapprox is small, then Etrain is a good approximation to Etest.

• What does Eapprox depend on?

– It tends to gets smaller as ‘n’ gets larger.

– It tends to grow as model get more “complicated”.



Fundamental Trade-Off

• This leads to a fundamental trade-off:

1. Etrain: how small you can make the training error.
vs.

2. Eapprox: how well training error approximates the test error.

• Simple models (like decision stumps):

– Eapprox is low (not very sensitive to training set).

– But Etrain might be high.

• Complex models (like deep decision trees):

– Etrain can be low.

– But Eapprox might be high (very sensitive to training set).



Fundamental Trade-Off

• Training error vs. test error for choosing depth:

– Training error gets better with depth.

– Test error initially goes down, but eventually increases (overfitting).



Validation Error

• How do we decide decision tree depth?

• We care about test error.

• But we can’t look at test data.

• So what do we do?????

• One answer: Use part of your dataset to approximate test error.

• Split training objects into training set and validation set:

– Train model based on the training data.

– Test model based on the validation data.



Validation Error



Validation Error

• Validation error gives an unbiased approximation of test error.

• Midterm analogy:

– You have 2 practice midterms.

– You hide one midterm, and spend a lot of time working through the other.

– You then do the other practice term, to see how well you’ll do on the test.

• We typically use validation error to choose “hyper-parameters”…



Notation: Parameters and Hyper-Parameters

• The decision tree rule values are called “parameters”.

– Parameters control how well we fit a dataset.

– We “train” a model by trying to find the best parameters on training data.

• The decision tree depth is a called a “hyper-parameter”.

– Hyper-parameters control how complex our model is.

– We can’t “train” a hyper-parameter.

• You can always fit training data better by making the model more complicated.

– We “validate” a hyper-parameter using a validation score.



Choosing Hyper-Parameters with Validation Set

• So to choose a good value of depth (“hyper-parameter”), we could:

– Try a depth-1 decision tree, compute validation error.

– Try a depth-2 decision tree, compute validation error.

– Try a depth-3 decision tree, compute validation error.

– …

– Try a depth-20 decision tree, compute validation error.

– Return the depth with the lowest validation error.

• After you choose the hyper-parameter, we usually 
re-train on the full training set with the chosen hyper-parameter.



Choosing Hyper-Parameters with Validation Set

• This leads to much less overfitting than using the training error.

– We optimize the validation error over 20 values of “depth”.

– Unlike training error, where we optimize over tons of decision trees.

• But it can still overfit (very common in practice):

– Validation error is only an unbiased approximation if you use it once.

– If you minimize it to choose a model, introduces optimization bias:

• If you try lots of models, one might get a low validation error by chance.

• Remember, our goal is still to do well on the test set (new data),
not the validation set (where we already know the labels).



Summary
• Training error vs. testing error:

– What we care about in machine learning is the testing error.

• Golden rule of machine learning:
– The test data cannot influence training the model in any way.

• Independent and identically distributed (IID):
– One assumption that makes learning possible.

• Fundamental trade-off:
– Trade-off between getting low training error and having training error approximate test error.

• Validation set:
– We can save part of our training data to approximate test error.

• Hyper-parameters:
– Parameters that control model complexity, typically set with a validation set.

• Next time:
– We discuss the “best” machine learning method.



Bounding Eapprox

• Let’s assume we have a fixed model ‘h’ (like a decision tree),
and then we collect a training set of ‘n’ examples.

• What is the probability that the error on this training set (Etrain), is 
within some small number ε of the test error (Etest)?

• From “Hoeffding’s inequality” we have:

• This is great! In this setting the probability that our training error is 
far from our test error goes down exponentially in terms of the 
number of samples ‘n’.



Bounding Eapprox

• Unfortunately, the last slide gets it backwards:

– We usually don’t pick a model and then collect a dataset.

– We usually collect a dataset and then pick the model ‘w’ based on the data.

• We now picked the model that did best on the data, and Hoeffding’s
inequality doesn’t account for the optimization bias of this procedure.

• One way to get around this is to bound (Etest – Etrain) for all models in the 
space of models we are optimizing over.

– If bound it for all models, then we bound it for the best model.

– This gives looser but correct bounds.



Bounding Eapprox

• If we only optimize over a finite number of events ‘k’, we can use 
the “union bound” that for events {A1, A2, …, Ak} we have:

• Combining Hoeffding’s inequality and the union bound gives:



Bounding Eapprox

• So, with the optimization bias of setting “h*” to the best ‘h’ among 
‘k’ models, probability that (Etest – Etrain) is bigger than ε satisfies:

• So optimizing over a few models is ok if we have lots of examples.

• If we try lots of models then (Etest – Etrain) could be very large.

• Later in the course we’ll be searching over continuous models 
where k = infinity, so this bound is useless.

• To handle continuous models, one way is via the VC-dimension.

– Simpler models will have lower VC-dimension.



Refined Fundamental Trade-Off

• Let Ebest be the irreducible error (lowest possible error for any model).
• For example, irreducible error for predicting coin flips is 0.5.

• Some learning theory results use Ebest to futher decompose Etest:

• This is similar to the bias-variance decomposition:

– Term 1: measure of variance (how sensitive we are to training data).

– Term 2: measure of bias (how low can we make the training error).

– Term 3: measure of noise (how low can any model make test error).



Refined Fundamental Trade-Off

• Decision tree with high depth:

– Very likely to fit data well, so bias is low.

– But model changes a lot if you change the data, so variance is high.

• Decision tree with low depth:

– Less likely to fit data well, so bias is high.

– But model doesn’t change much you change data, so variance is low.

• And degree does not affect irreducible error.

– Irreducible error comes from the best possible model.



Bias-Variance Decomposition

• Analysis of expected test error of any learning algorithm:



Learning Theory

• Bias-variance decomposition is a bit weird compared to our previous 
decompositions of Etest:

– Bias-variance decomposition considers expectation over possible training sets.

– But doesn’t say anything about test error with your training set.

• Some keywords if you want to learn about learning theory:

– Bias-variance decomposition, sample complexity, probably approximately correct 
(PAC) learning, Vapnik-Chernovenkis (VC) dimension, Rademacher complexity.

• A gentle place to start is the “Learning from Data” book:

– https://work.caltech.edu/telecourse.html



A Theoretical Answer to “How Much Data?”

• Assume we have a source of IID examples and a fixed class of parametric 
models.

• Like “all depth-5 decision trees”.

• Under some nasty assumptions, with ‘n’ training examples it holds that:
E[test error of best model on training set] – (best test error in class) = O(1/n).

• You rarely know the constant factor, but this gives some guidelines:
– Adding more data helps more on small datasets than on large datasets.

• Going from 10 training examples to 20, difference with best possible error gets cut in half.
– If the best possible error is 15% you might go from 20% to 17.5% (this does not mean 20% to 10%).

• Going from 110 training examples to 120, error only goes down by ~10%.
• Going from 1M training examples to 1M+10, you won’t notice a change.

– Doubling the data size cuts the error in half:
• Going from 1M training to 2M training examples, error gets cut in half.
• If you double the data size and your test error doesn’t improve, more data might not help.



Can you test the IID assumption?


