CPSC 340:
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Convolutional Neural Networks
Fall 2017



Admin

* Assignment 5:
— Due tonight, 1 late day for Wednesday, 2 for Friday.

* Final:
— Next Tuesday, details and previous exams posted on Piazza.

e Extra office hours:
— 3:00-?:?? Thursday in ICICS 146 (with me).
— Monday we’ll have office hours at 11-12 (1 TA) and 1-2 (2 TAs).
— Tuesday we’ll have office hours from 12-2 (1 TA).



Last Lectures: Deep Learning

* We've been discussing neural network / deep learning models:
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* We discussed unprecedented vision/speech performance.
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Last Lectures: Deep Learning

e Last time we discussed heuristics to make it work:
— Parameter initialization and data transformations.
— Setting the step size(s) in stochastic gradient.
— Alternative non-linear functions like ReLU.

— Different forms of regularization:
* L2-regularization, early stopping, dropout.

* These are often still not enough to get deep models working.

 Deep computer vision models are all convolutional neural networks:
— The WM are very sparse and have repeated parameters (“tied weights”).
— Drastically reduces number of parameters (speeds training, reduces overfitting).



Motivation: Automatic Brain Tumor Segmentation

e Task: segmentation tumors and normal tissue in multi-modal MRI data.
Input: Output:

* Applications:
— Radiation therapy target planning, quantifying treatment responses.
— Mining growth patterns, image-guided surgery.

e Challenges:

— Variety of tumor appearances, similarity to normal tissue.
— “You are never going to solve this problem.”



Naive Voxel-Level Classifier

* We could treat classifying a voxel as supervised learning:

= (18, 197,246 ) Y= Tumour

* We can formulate predicting y; given x; as supervised learning.
* But it doesn’t work at all with these features.



Need to Summarize Local Context

* The individual voxel values are almost meaningless:

— This x; could lead to different y..

* Intensities not standardized.
* Non-trivial overlap in signal for different tissue types.
e “Partial volume” effects at boundaries of tissue types.



Need to Summarize Local Context

|II

* We need to represent the spatial “context” of the voxel.

— Include all the values of neighbouring voxels?

* Variation on coupon collection problem: requires lots of data to find patterns.

— Measure neighbourhood summary statistics (mean, variance, histogram)?

* Variation on bag of words problem: loses spatial information present in voxels.

— Standard approach uses convolutions to represent neighbourhood.



Representing Neighbourhoods with Convolutions

e Consider a 1D dataset:

— Want to classify each
time intoy, in {1,2,3}.
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— Example: speech data.

* Easy to distinguish class 2 from the other classes (x, are smaller).

* Harder to distinguish between class 1 and class 3 (similar x, range).
— But convolutions can represent that class 3 is in “spiky” region.



Representing Neighbourhoods with Convolutions

* Original features (left) and features from convolutions (right):

Time

e Easy to distinguish the 3 classes with these 2 features.



1D Convolution (notation is specific to this lecture)

e 1D convolution input:

— Signal ‘x” which is a vector length ‘n’. )(:[0 123 & 9 13]
* Indexed by i=1,2,...,,n.
— Filter ‘w’ which is a vector of length 2m+1’: ~
Ind dbyi 1,.-2,0,1,2 g1 WPCO ﬁ‘ 2 ﬁl O]
* |Indexe i=-m,-m+1,...-2,0,1,2,....m-1,m
! Wy W W %W

* Qutputis a vector of length ‘n” with elements:
m

4 = Z W Xy,

J=-m
— You can think of this as centering w at z. and taking a dot product.



1D Convolution

e 1D convolution example:
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1D Convolution

1D convolution example: Lef's (o/vofw‘e 2.

— Signal: ~

X‘[g LE—}?$ \Sa-j'
— Filter: :LO ~| YjZ -1 0

W%W.(Woww] (1 23 5 3]
— Convolution:
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1D Convolution Examples

 Examples:
— “Identity”
o w=C0 | 0]
— “Translation”
_sw=L0 O )
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1D Convolution Examples

« Examples: et x=LO | 1 23 5 8 13]
— “Ildentity”
w=C0 1 0) =[O0 1 | 2 26 % 1)
ot )nvomﬁ

— “Local Average”
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Boundary Issue

* What can we about the “?” at the edges?
TE x=CO0 V|23 6 313) and wil% % %) then 227 % 1% 2 3% S% 7;\

* Can assign values past the boundaries:

« “Zero”: x=00 0O ;O \ I 1l 3 T 3 I}j O OO0
« “Replicate”: x=0 0 O :O | 2 3 G 3 ’gj B 3B
* “Mirror”: x= A | | CO \ | L 3 5 3 '{j g g 3

* Orjustignore the “?” values and return a shorter vector:

=[% 1% 2 34 6% ¢%)



1D Convolution Examples

* Translation convolution shift signal:

w=Ll 0000 0 0 00]




1D Convolution Examples

* Averaging convolution computes local mean:

W:El/b ’/; ,/3]




1D Convolution Examples

* Averaging over bigger window gives coarser view of signal:
/ / [ /
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1D Convolution Examples
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L
* Gaussian convolution blurs signal: ~ W;Xexp 2@1)

— Compared to averaging it’s more smooth and maintains peaks better.
W= [ 0.0000 0.0644 00540 0.1420 (03459 0.2420 (0540 0,084 0.000/ ]
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1D Convolution Examples

* Sharpen convolution enhances peaks.
— An “average” that places negative weights on the surrounding pixels.
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1D Convolution Examples

* Laplacian convolution approximates second derivative:
— “Sum to zero” filters “respond” if input vector looks like the filter

w1 2 1]

-3.7 0.6

041

0.2

021

041

-0.6



Digression: Derivatives and Integrals

 Numerical derivative approximations can be viewed as filters:

— Centered difference: [-1, O, 1] (derivativeCheck in findMin.jl). : /

 Numerical integration approximations can be viewed as filters:

— “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter). A
/
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e Derivative filters add to O, integration filters add to 1,
— For constant function, derivative should be 0 and average = constant.



1D Convolution Examples

 Laplacian of Gaussian is a smoothed 2"d-derivative approximation:
W, = (l~j;"f> Cxp (“']2;) W= Lm0 Q1781 —(R74¢ (I 03467 Oldso ~Qard -0 - QWi
(ﬂ\t’n s bl eact W\fﬂﬂ) (6’ =1, m= 49
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1D Convolution Examples

e We often use maximum over several convolutions as features:
— We could take maximum of Laplacian of Gaussian over x, and its 16 KNNs.

— We use different convolutions as our features (derivatives, integrals, etc.).
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Images and Higher-Order Convolution

* 2D convolution:
— Signal x’ is the pixel intensities in an ‘n’ by ‘n’ image.
— Filter ‘w’ is the pixel intensities in a 2m+1’ by 2m+1’ image.
* The 2D convolution is given by:
M
“ZE),),')J = ’é 2 W['S;,‘)'JXE/, ﬂ',)iz +J'2]
LA Pt

* 3D and higher-order convolutions are defined similarly.
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples ...,
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples




Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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http://setosa.io/ev/image-kernels

Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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3D Convolution
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3D Convolution
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3D Convolution
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3D Convolution
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3D Convolution
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Filter Banks

 To characterize context, we used to use filter bank like “MR8":
— 1 Gaussian filter, 1 Laplacian of Gaussian filter.
— 6 max(Gabor) filters: 3 scales of sine/cosine (maxed over orientations).
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* Convolutional neural networks are now replacing filter banks.



1D Convolution as Matrix Multiplication

* Each element of a convolution is an inner product:

™M
2= 2 WXy
= m
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e So convolution is a matrix multiplication (I’'m ignoring boundaries):

~ o —w — 0 00
2= Wx  whee W=| o - - w 22 |
Lo 0 O w 4

* The shorter ‘W’ is, the more sparse the matrix is.
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Motivation for Convolutional Neural Networks

Consider training neural networks on 256 by 256 images.
— This is 256 by 256 by 3 = 200,000 inputs.

If first layer has k=10,000, then it has about 2 billion parameters.
— We want to avoid this huge number (due to storage and overfitting).

Key idea: make Wx. act like convolutions (to make it smaller):

1. Each row of W only applies to part of x.. W':[—O 0 b w—— 0 OOJ

00 000,
- w
\A/lJLO

Forces most weights to be zero, reduces number of parameters.

2. Use the same parameters between rows.




Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.
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Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to results of several convolutions.
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Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to results of several convolutions.
— Pooling layer: combine results of convolutions.

e Can add invariances or just make the number of parameters smaller.

e Usual choice is ‘max pooling’: /1
o\

over 2Ax1
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LeNet for Optical Character Recognition




Summary

Convolutions are flexible class of signal/image transformations.
— Can approximate derivatives and integrals at different scales.

Max(convolutions) can yield features that make classification easy.
Convolutional neural networks:

— Restrict WM matrices to represent sets of convolutions.
— Often combined with max (pooling).

Next time: modern convolutional neural networks and applications.
— Image segmentation, depth estimation, image colorization, artistic style.



Number of parameters?

* Example with 1 conv/pool layer and 2 fully connected layers:

— you start with a 28x28x3 RGB image

— 32 filters each of size 5x5x3

— 2x2 max pooling

— fully connected layer with 128 hidden units

— fully connected layer going to 10 output units for 10-class classification
* How many parameters does this model have?

— the first convolutional layer has 5x5x3x32 (+32 bias).

— this results in images of size 24x24 (this depends on how you handle convolutions at boundaries).
— After 2x2 max pooling they are 12x12.

— When we flatten this representation, we get 12x12x32 activations. This gives us 12x12x32x128
(+128 bias).

— Finally we have a dense layer with 128x10 (+10 bias) parameters.

— The grand total is 5x5x32x3 + 12x12x32x128 + 128x10 + 32 + 128 + 10 = 2400 + 589824 + 1280 +
170 = 593674.

* Most of the parameters come from the dense layer in this case (non-sparse).
* This kind of calculation is tedious but it’s a good way to understand the details.



FFT implementation of convolution

* Convolutions can be implemented using fast Fourier transform:
— Take FFT of image and filter, multiply elementwise, and take inverse FFT.

* |t has faster asymptotic running time but there are some catches:
— You need to be using periodic boundary conditions for the convolution.
— Constants matter: it may not be faster in practice.

e Especially compared to using GPUs to do the convolution in hardware.

— The gains are largest for larger filters (compared to the image size).



Image Coordinates

* Should we use the image coordinates?
— E.g., the pixel is at location (124, 78) in the image.

* Considerations:
— |s the interpretation different in different areas of the image?

— Are you using a linear model?
* Would “distance to center” be more logical?

— Do you have enough data to learn about all areas of the image?



Alignment-Based Features

 The position in the image is important in brain tumour application.
— But we didn’t have much data, so coordinates didn’t make sense.

 We aligned the images with a “template image”.
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Alignment-Based Features

 The position in the image is important in brain tumour application.
— But we didn’t have much data, so coordinates didn’t make sense.

 We aligned the images with a “template image”.
— Allowed “alignment-based” features:
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Motivation: Automatic Brain Tumor Segmentation

* Final features for brain tumour segmentation:
— MRS filter bank applied to original T1, T2, and T1 “contrast” — T1 “original”.
— Gaussian convolution with 3 variances of alignment-based features.




SIFT Features

e Scale-invariant feature transform (SIFT):
— Features used for object detection (“is particular object in the image”?)
— Designed to detect unique visual features of objects at multiple scales.
— Proven useful for a variety of object detection tasks.




