CPSC 340:
Machine Learning and Data Mining

More Deep Learning
Fall 2017

Admin

* Assignment 5:
— Due Monday, 1 late day for Wednesday, 2 for next Friday.

* Final:
— Details and previous exams posted on Piazza.

e Extra office hours:
— 3:00 next Thursday (with me).
— Monday/Tuesday (with TAs).

DEEP HIERARCHIES IN THE VISUAL SYSTEM

LOCATION FEATURE RECEPTIVE FIELD SIZE
RETINA PHOTORECEPTOR
GANGLION CELL (0]O
(o]
THALAMUS LGN e
] LATERAL GEN oess @ o
Vi SIMPLE CELL S~ I
Q O =i
CWREXCEL P T,
K T
OWNERSHIP
(V3)
va (([
CURVATURE UM INVARIANT T
nnnnnn
VENTRAL DORSAL
PATHWAY PATHWAY
T VA x
IMPLE SHAPE ¥
EEEEEE ANALYSIS OF SPAGE
TE \" ® i ACTION PLANING
COMPLEX FEATURE

CONFIGURATIONS

Deff ne MN\I nefwr /(32

i = AW R(W X))
—UnfrecOJem/eJ P(r’/:aff\mff on A"H“'(U\” ’ﬂll?/ﬁ”lf

|_earn /W\ and 'V ‘hﬁﬁkr

- lEWr\ ~r fures '{\o(S5 v'lseé) §>‘7l «
- ’eqrmm}_ W ‘1,’ 2SS
,——No:vhneur ' makes it a m @

' \
\Aniversql m”rroxwm‘for]Cor '°"c 'K

"Ea(l\ 'a)’er COW\Liﬂej "fwd‘sh "ﬂ-am frw‘wg /uyt‘f.

Deep Learning Practicalities

* This lecture focus on deep learning practical issues:
— Backpropagation to compute gradients.
— Stochastic gradient training.
— Regularization to avoid overfitting.

* Next lecture:
— Special ‘W’ restrictions to further avoid overfitting.

But first: Adding Bias Variables

Recall fitting line regressmn with a bias:
Ji=2uh

— We avoided this by addlng a column of ones to X.
In neural networks we often want a bias on the output:

y, thmx)*ﬂ

But we also often also mclude biases on each z_
Z l'\(wb)(‘.l-go) +/9
— A bias towards this h(z) belng either O or 1.

Equivalent to adding to vector h(z;) an extra value that is always 1.
— For sigmoids, you could equivalently make one row w_ be equal to 0.

But first: Adding Bias Variables

“
.S
-~
=
3
o
—
(=]

s

\
$
A

Artificial Neural Networks
* With squared loss, our objective function is:
FlwW)= 1 5 (V7 h(um) ~y,)?

* Usual training procedure: stochastic gradient.
— Compute gradient of random example ‘i’, update both ‘v’ and ‘W’.
— Highly non-convex and can be difficult to tune.

 Computing the gradient is known as “backpropagation”.

— Video giving motivation here.

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Backpropagation

Overview of how we compute neural network gradient:

— Forward propagation:
» Compute zY) from x.
» Compute z? from z%).

» Compute yhat; from z{™, and use this to compute error.
— Backpropagation:

« Compute gradient with respect to regression weights ‘v’.

Compute gradient with respect to z!™ weights W),

Compute gradient with respect to z/™?1 weights W(m-),

Compute gradient with respect to z*) weights W%,

“Backpropagation” is the chain rule plus some bookkeeping for speed.

Backpropagation

e Let’s illustrate backpropagation in a simple setting:
— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

‘F W(/)) W(U W(!; V):__i— (}//\’__ y))Z \A/l"trf— ;/\i :Vk(W‘??L[WN)A(W(")(i)))
(3) (2) bw‘{—} (3)
%,: Ch W h(w*h(wx,))"rk(z-)
2f

— vV
= V"\ (.Wmh(W(Z) (w"y, »)}\ m;\(wm)() =" vl«\ ’;))[.\[Z (2))

Backpropagation

e Let’s illustrate backpropagation in a simple setting:
— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

W) (2) - | A ((2 ()
t(w)WZ)W(;; v)= 2 (@)Z where 7/'\i =vh (Wb W A (W)
F‘\(Wml\ (Z)I’\ W()))Z(‘}\(Z'm)

) R 2)
= th\ (Wlbh(w(z WU)Y)))}\ lz);‘(w -)) - Vl'\)l‘\[z (2))
\,\/—w
3 21} T/"(s) 3V [(V0
(W(zw‘(W(Z)L\ W(I)))) (7;) (W))k(w X) W A [)A(
\‘y——/

mm =V l"
\
2_\'_" . L\(W“))\(WR)MW”)))Wll)h (WIZI(W()))W(Z])‘ (W()) — (1) WU);\ () ,

%
AV
2f

Backpropagation

e Let’s illustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

Y = oh=”)

H = 0 Wb () h(z)
= W
B = W (20,

2)
9\\/ k(B)
=

uw= Cwh (2 m)k(z 5

% (3) (37 (2))
2W‘27 [2 (o Wi)}\ .
£ %

0 _ (4) (1) n
2w, =]h) x

— Only the first ‘r’ changes if you use a different Ioss
— With multiple hidden units, you get extra sums.

\/—-

 Efficient if you store the sums rather than computing from scratch.

Backpropagation

I’'ve marked those backprop math slides as bonus.

Do you need to know how to do this?

— Exact details are probably not vital (there are many implementations),
but understanding basic idea helps you know what can go wrong.

— See discussion here by a neural network expert.

You should know cost of backpropagation:
— Forward pass dominated by matrix multiplications by W), W), WG and ‘v’.
* If have ‘m’ layers and all z, have ‘k’ elements, cost would be O(dk + mk?).
— Backward pass has same cost as forward pass.
For multi-class or multi-label classification, you replace ‘v’ by a matrix:
— Softmax loss is often called “cross entropy” in neural network papers.

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

(pause)

Last Time: ImageNet Challenge

ImageNet challenge:
— Use millions of images to recognize 1000 objects.

ImageNet organizer visited UBC summer 2015.
“Besides huge dataset/model/cluster, what is the most important?”

1. Image transformations (translation, rotation, scaling, lighting, etc.).
2. Optimization.
Why would optimization be so important?

— Neural network objectives are highly non-convex (and worse with depth).
— Optimization has huge influence on quality of model.

Stochastic Gradient Training

e Standard training method is stochastic gradient (SG):
— Choose a random example V.
— Use backpropagation to get gradient with respect to all parameters.
— Take a small step in the negative gradient direction.

* Challenging to make SG work:
— Often doesn’t work as a “black box” learning algorithm.
— But people have developed a lot of tricks/modifications to make it work.
* Highly non-convex, so are the problem local mimina?
— Some empirical/theoretical evidence that local minima are not the problem.

— If the network is “deep” and “wide” enough, we think all local minima are good.
— But it can be hard to get SG to even find a local minimum.

Parameter Initialization

* Parameter initialization is crucial:
— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’t initialize weights too large, it will take too long to learn.

* A traditional random initialization:

— Initialize bias variables to O.

— Sample from standard normal, divided by 10° (0.00001*randn).
 w=.00001*randn(k,1)
— Performing multiple initializations does not seem to be important.

* Popular approach from 10 years ago:
— Initialize with deep unsupervised model (like “autoencoders” — see bonus).

Parameter Initialization

* Parameter initialization is crucial:
— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’t initialize weights too large, it will take too long to learn.

* Also common to standardize data:
— Subtract mean, divide by standard deviation, “whiten”, standardize y..

* More recent initializations try to standardize initial z;:
— Use different initialization in each layer.
— Try to make variance of z, the same across layers.
— Use samples from standard normal distribution, divide by sqrt(2*nlnputs).
— Use samples from uniform distribution on [-b,b], where b= s

—m—

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.

e Common approach: manual “babysitting” of the step-size.
— Run SG for a while with a fixed step-size.
— Occasionally measure error and plot progress:

\"\‘L‘WH Jeremc o(t
/ #\\"NJ—S’ detrenst o

A

—

Crro,

I

S

Time

— If error is not decreasing, decrease step-size.

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.
* Bias step-size multiplier: use bigger step-size for the bias variables.

* Momentum:
— Add term that moves in previous direction:

\/\/H = wh - o(tvﬁ (w*) + ﬁt(wé'wt")
(o keep gom in e

old A'.rediof‘
— Usually Bt =0.9.

Setting the Step-Size

Automatic method to set step size is Bottou trick:
1. Grab a small set of training examples (maybe 5% of total).
2. Do abinary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

Several recent methods using a step size for each variable:
— AdaGrad, RMSprop, Adam (often work better “out of the box”).

— Seem to be losing popularity to stochastic gradient (often with momentum).
* Often yields lower test error but this requires more tuning of step-size.

Batch size (number of random examples) also influences results.
— Bigger batch sizes often give faster convergence but to worse solutions.

Another recent trick is batch normalization:
— Try to “standardize” the hidden units within the random samples as we go.

Vanishing Gradient Problem

Consider the sigmoid function:

. O .. :
Away from the origin, the gradient is nearly zero.
The problem gets worse when you take the sigmoid of a sigmoid:

|

o
In deep networks, many gradients can be nearly zero everywhere.

Rectified Linear Units (RelLU)

.
* Replace sigmoid with hinge-like loss (ReLU): """"”w? wex§

|
\ "
T

' ff’ff (" V"cX'.)

- —

* Just sets negative values z,_ to zero.
— Fixes vanishing gradient problem.
— Gives sparser of activations.
— Not really simulating binary signal, but could be simulating rate coding.

Deep Learning and the Fundamental Trade-Off

* Neural networks are subject to the fundamental trade-off:
— As we increase the depth, training error decreases.
— As we increase the depth, training error no longer approximates test error.

* We want deep networks to model highly non-linear data.
— But increasing the depth leads to overfitting.

* How could GooglLeNet use 22 layers?

— Many forms of regularization and keeping model complexity under control.

Standard Regularization
* We typically add our usual L2-regularizers:

‘F(V (z) Wm)- | i (v L(le« (Z)HW X,») /‘ +/"9”V"2+23“Wm’ +’)NW(2)”F +;”'Ww,’;

e L2-regularization is called “weight decay” in neural network papers.
— Could also use L1-regularization.

 “Hyper-parameter” optimization:
— Try to optimize validation error in terms of A;, A, A3, A,.

* Unlike linear models, typically use multiple types of regularization.

Early Stopping

* Second common type of regularization is “early stopping”:

— Monitor the validation error as we run stochastic gradient.

— Stop the algorithm if validation error starts increasing.

A

accuracy

training accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting
L

Vn$NhAmt€,y |+ VV\H,WL

lookk more ke

)

—

/t/l\OrQR\”y \/0»\ ,loy\l‘}
S’tOr heve.

Dropout

 Dropout is a more recent form of regularization:
— On each iteration, randomly set some x, and z, to zero (often use 50%).

(a) Standard Neural Net (b) After applying dropout.

— Encourages distributed representation rather than using specific z..
— Like ensembling a lot of models but without the high computational cost.
— After a lot of success, dropout may already be going out of fashion.

Summary

Backpropagation computes neural network gradient via chain rule.
Parameter initialization is crucial to neural net performance.
Optimization and step size are crucial to neural net performance.

Regularization is crucial to neural net performance:
— L2-regularization, early stopping, dropout.

Next time:
— The other crucial piece to get these working for vision problems.

Autoencoders

Autoencoders are an unsupervised deep learning model:
— Use the inputs as the output of the neural network.

encoder decoder

w1l w2 w2’ w1’
— Middle layer could be latent features in non-linear latent-factor model.
e Can do outlier detection, data compression, visualization, etc.

— A non-linear generalization of PCA.

https://www.cs.toronto.edu/~hinton/science.pdf

Autoencoders

Aubencoder

European Community

Interbank markets monetary/economic
o N ¥ : .. =

Disasters and
accidents

Leading economic® .~

ind . ey T4 A 3 "
ndicators g ’ i ’tk

) AR e 8 Government
g S~ 4
Accounts/ . ° ‘“‘i‘: borrowings

eamings uf

Denoising Autoencoder

Denoising autoencoders add noise to the input:

encoder decoder

W1 w2 w2" w1

— Learns a model that can remove the noise.

