
CPSC 340:
Machine Learning and Data Mining

More Deep Learning

Fall 2017



Admin

• Assignment 5:

– Due Monday, 1 late day for Wednesday, 2 for next Friday.

• Final:

– Details and previous exams posted on Piazza.

• Extra office hours:

– 3:00 next Thursday (with me).

– Monday/Tuesday (with TAs).



https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing

Last Time: Deep Learning



Deep Learning Practicalities

• This lecture focus on deep learning practical issues: 

– Backpropagation to compute gradients.

– Stochastic gradient training.

– Regularization to avoid overfitting.

• Next lecture:

– Special ‘W’ restrictions to further avoid overfitting.



• Recall fitting line regression with a bias:

– We avoided this by adding a column of ones to X.

• In neural networks we often want a bias on the output:

• But we also often also include biases on each zic:

– A bias towards this h(zic) being either 0 or 1.

• Equivalent to adding to vector h(zi) an extra value that is always 1.

– For sigmoids, you could equivalently make one row wc be equal to 0.

But first: Adding Bias Variables



But first: Adding Bias Variables



Artificial Neural Networks

• With squared loss, our objective function is:

• Usual training procedure: stochastic gradient.

– Compute gradient of random example ‘i’, update both ‘v’ and ‘W’.

– Highly non-convex and can be difficult to tune.

• Computing the gradient is known as “backpropagation”.

– Video giving motivation here.

https://www.youtube.com/watch?v=Ilg3gGewQ5U


Backpropagation

• Overview of how we compute neural network gradient:

– Forward propagation:
• Compute zi

(1) from xi.

• Compute zi
(2) from zi

(1).

• …

• Compute yhati from zi
(m), and use this to compute error.

– Backpropagation:
• Compute gradient with respect to regression weights ‘v’.

• Compute gradient with respect to zi
(m) weights W(m).

• Compute gradient with respect to zi
(m-1) weights W(m-1).

• …

• Compute gradient with respect to zi
(1) weights W(1).

• “Backpropagation” is the chain rule plus some bookkeeping for speed.



Backpropagation

• Let’s illustrate backpropagation in a simple setting:

– 1 training example, 3 hidden layers, 1 hidden “unit” in layer.



Backpropagation

• Let’s illustrate backpropagation in a simple setting:

– 1 training example, 3 hidden layers, 1 hidden “unit” in layer.



Backpropagation

• Let’s illustrate backpropagation in a simple setting:

– 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

– Only the first ‘r’ changes if you use a different loss.

– With multiple hidden units, you get extra sums.

• Efficient if you store the sums rather than computing from scratch.



Backpropagation

• I’ve marked those backprop math slides as bonus.

• Do you need to know how to do this?
– Exact details are probably not vital (there are many implementations),

but understanding basic idea helps you know what can go wrong.

– See discussion here by a neural network expert.

• You should know cost of backpropagation:
– Forward pass dominated by matrix multiplications by W(1), W(2), W(3), and ‘v’.

• If have ‘m’ layers and all zi have ‘k’ elements, cost would be O(dk + mk2).

– Backward pass has same cost as forward pass.

• For multi-class or multi-label classification, you replace ‘v’ by a matrix:
– Softmax loss is often called “cross entropy” in neural network papers.

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b


(pause)



Last Time: ImageNet Challenge

• ImageNet challenge:

– Use millions of images to recognize 1000 objects.

• ImageNet organizer visited UBC summer 2015.

• “Besides huge dataset/model/cluster, what is the most important?”

1. Image transformations (translation, rotation, scaling, lighting, etc.).

2. Optimization.

• Why would optimization be so important?

– Neural network objectives are highly non-convex (and worse with depth). 

– Optimization has huge influence on quality of model.



Stochastic Gradient Training

• Standard training method is stochastic gradient (SG):

– Choose a random example ‘i’.

– Use backpropagation to get gradient with respect to all parameters.

– Take a small step in the negative gradient direction.

• Challenging to make SG work:

– Often doesn’t work as a “black box” learning algorithm.

– But people have developed a lot of tricks/modifications to make it work.

• Highly non-convex, so are the problem local mimina?

– Some empirical/theoretical evidence that local minima are not the problem.

– If the network is “deep” and “wide” enough, we think all local minima are good.

– But it can be hard to get SG to even find a local minimum.



Parameter Initialization

• Parameter initialization is crucial:
– Can’t initialize weights in same layer to same value, or they will stay same.

– Can’t initialize weights too large, it will take too long to learn.

• A traditional random initialization:
– Initialize bias variables to 0.

– Sample from standard normal, divided by 105 (0.00001*randn).
• w = .00001*randn(k,1)

– Performing multiple initializations does not seem to be important.

• Popular approach from 10 years ago: 
– Initialize with deep unsupervised model (like “autoencoders” – see bonus).



Parameter Initialization

• Parameter initialization is crucial:

– Can’t initialize weights in same layer to same value, or they will stay same.

– Can’t initialize weights too large, it will take too long to learn.

• Also common to standardize data:

– Subtract mean, divide by standard deviation, “whiten”, standardize yi.

• More recent initializations try to standardize initial zi:

– Use different initialization in each layer.

– Try to make variance of zi the same across layers.

– Use samples from standard normal distribution, divide by sqrt(2*nInputs).

– Use samples from uniform distribution on [-b,b], where



Setting the Step-Size

• Stochastic gradient is very sensitive to the step size in deep models.

• Common approach: manual “babysitting” of the step-size.

– Run SG for a while with a fixed step-size.

– Occasionally measure error and plot progress:

– If error is not decreasing, decrease step-size.



Setting the Step-Size

• Stochastic gradient is very sensitive to the step size in deep models.

• Bias step-size multiplier: use bigger step-size for the bias variables.

• Momentum:

– Add term that moves in previous direction:

– Usually βt = 0.9.



Setting the Step-Size

• Automatic method to set step size is Bottou trick: 
1. Grab a small set of training examples (maybe 5% of total).
2. Do a binary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

• Several recent methods using a step size for each variable:
– AdaGrad, RMSprop, Adam (often work better “out of the box”).
– Seem to be losing popularity to stochastic gradient (often with momentum).

• Often yields lower test error but this requires more tuning of step-size.

• Batch size (number of random examples) also influences results.
– Bigger batch sizes often give faster convergence but to worse solutions.

• Another recent trick is batch normalization:
– Try to “standardize” the hidden units within the random samples as we go.



Vanishing Gradient Problem

• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.

• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.



Rectified Linear Units (ReLU)

• Replace sigmoid with hinge-like loss (ReLU):

• Just sets negative values zic to zero.

– Fixes vanishing gradient problem.

– Gives sparser of activations.

– Not really simulating binary signal, but could be simulating rate coding.



Deep Learning and the Fundamental Trade-Off

• Neural networks are subject to the fundamental trade-off:

– As we increase the depth, training error decreases.

– As we increase the depth, training error no longer approximates test error.

• We want deep networks to model highly non-linear data.

– But increasing the depth leads to overfitting.

• How could GoogLeNet use 22 layers?

– Many forms of regularization and keeping model complexity under control.



Standard Regularization

• We typically add our usual L2-regularizers:

• L2-regularization is called “weight decay” in neural network papers.

– Could also use L1-regularization.

• “Hyper-parameter” optimization:

– Try to optimize validation error in terms of λ1, λ2, λ3, λ4.

• Unlike linear models, typically use multiple types of regularization. 



Early Stopping

• Second common type of regularization is “early stopping”:

– Monitor the validation error as we run stochastic gradient.

– Stop the algorithm if validation error starts increasing.

http://cs231n.github.io/neural-networks-3/



Dropout

• Dropout is a more recent form of regularization:
– On each iteration, randomly set some xi and zi to zero (often use 50%).

– Encourages distributed representation rather than using specific zi.

– Like ensembling a lot of models but without the high computational cost.

– After a lot of success, dropout may already be going out of fashion.
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf



Summary

• Backpropagation computes neural network gradient via chain rule.

• Parameter initialization is crucial to neural net performance.

• Optimization and step size are crucial to neural net performance.

• Regularization is crucial to neural net performance:

– L2-regularization, early stopping, dropout.

• Next time:

– The other crucial piece to get these working for vision problems.



• Autoencoders are an unsupervised deep learning model:
– Use the inputs as the output of the neural network.

– Middle layer could be latent features in non-linear latent-factor model.
• Can do outlier detection, data compression, visualization, etc.

– A non-linear generalization of PCA.

Autoencoders

http://inspirehep.net/record/1252540/plots



Autoencoders

https://www.cs.toronto.edu/~hinton/science.pdf



• Denoising autoencoders add noise to the input:

– Learns a model that can remove the noise.

Denoising Autoencoder

http://inspirehep.net/record/1252540/plots


