CPSC 340:
Machine Learning and Data Mining



Admin

Assignment 4.
— 2 late days for tonight Wednesday.

Assignment 5:
— Due Monday.

Final:
— Details and previous exams posted on Piazza.

Extra office hours:
— 3:00 next Thursday.



Supervised Learning Roadmap

Part 1: “Direct” Supervised Learning.
— We learned parameters ‘w’ based on the original features x, and target y..

Part 3: Change of Basis.
— We learned parameters ‘w’ based on a change of basis z. and target y..

Part 4: Latent-Factor Models.
— We learned parameters ‘W’ for basis z, based on only on features x.. @

— You can then learn ‘w’ based on change of basis z; and target y;,. /;/7 \
Vv,
v e

Part 5: Neural Networks.
— Jointly learn ‘W’ and ‘w’ based on x, and y..
— Learn basis z, that is good for supervised learning.



A Graphical Summary of CPSC 340 Parts 1-5
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Notation for Neural Networks
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Linear-Linear Model

* Obvious choice: linear latent-factor model with linear regression.
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* We want to train ‘W’ and ‘v’ jointly, so we could minimize:
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Introducing Non-Linearity

To increase flexibility, something needs to be non-linear.
Typical choice: transform z, by non-linear function ‘h’.

z, = Wy %= V'hiz)
— Here the function ‘h’ transforms ‘k’” inputs to ‘k’ outputs.
Common choice for ‘h’: applying sigmoid function element-wise:
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So this takes the z,_in (-o=,o0) and maps it to (0,1).
This is called a “multi-layer perceptron” or a “neural network”.



Why Sigmoid?

* Consider setting ‘h’ to define binary features z, using:
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— Each h(zi) can be viewed as binary feature.

* “You either have this ‘part’ or you don’t have it.”

— We can make 2k objects by all the Motivation: Pixels vs. Parts
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Why Sigmoid?

* Consider setting ‘h’ to define binary features z, using:

‘r\(z'lJ: | if 2. 70
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‘="h (Zic)
— 2.

— Each h(zi) can be viewed as binary feature.

* “You either have this ‘part’ or you don’t have it.”

— We can make 2¥ objects by all the
possible “part combinations”.

* But this is hard to optimize (non-differentiable/discontinuous).
* Sigmoid is a smooth approximation to these binary features.



Supervised Learning Roadmap
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Why “Neural Network”?

Dendrite
|

Cartoon of “typical” neuron:

Nucleus

Myelin sheath

Axon terminal

=
Schwann cell

Neuron has many “dendrites”, which take an input signal.

Neuron has a single “axon”, which sends an output signal.

With the right input to dendrites:
— “Action potential” along axon (like a binary signal):
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Why “Neural Network”?

Dendrite Axon terminal
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Why “Neural Network™?
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Why “Neural Network”?
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Deep Hierarchies in the Brain

DEEP HIERARCHIES IN THE VISUAL SYSTEM
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Deep Learning
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“Hierarchies of Parts” Motivation for Deep Learning

 Each “neuron” might recognize
a “part” of a digit.

— “Deeper” neurons might recognize
combinations of parts.

— Represent complex objects as
hierarchical combinations of
re-useable parts (a simple “grammar”)

 Watch the full video here:

— https://www.youtube.com/watch?v=aircAruvnKk



https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk&t=300s
https://www.youtube.com/watch?v=aircAruvnKk&t=300s
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Deep Learning

* For 4 layers, we could write the prediction as:
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ML and Deep Learning History

Perceptrons

e 1950 and 1960s: Initial excitement.

— Perceptron: linear classifier and stochastic gradient (roughly).

— “the embryo of an electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious of its existence.” 7
New York Times (1958).

e https://www.youtube.com/watch?v=IEFRtz68m-8
— Marvin Minsky assigns
object recognition to

his students as a
summer project

 Then drop in popularity:



https://www.youtube.com/watch?v=IEFRtz68m-8

ML and Deep Learning History

DEEP HIERARCHIES IN THE VISUAL SYSTEM

» 1970 and 1980s: Connectionism (brain-inspired ML) I
— Want “connected networks of simple units”. V. -/

e Use parallel computation and distributed representations. wean e

— Adding hidden layers z; increases expressive power. " e i B

* With 1 layer and enough sigmoid units, a universal approximator. i <( ¢m ,,,,,

— Success in optical character recognition. o
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ML and Deep Learning History

* 1990s and early-2000s: drop in popularity.

— It proved really difficult to get multi-layer models working robustly.

— We obtained similar performance with simpler models:

e Rise in popularity of logistic regression and SVMs with regularization and kernels.

— ML moved closer to other fields (CPSC 540):

 Numerical optimization.
* Probabilistic graphical models.
e Bayesian methods.



ML and Deep Learning History

e Late 2000s: push to revive connectionism as “deep learning”.
— Canadian Institute For Advanced Research (CIFAR) NCAP program:

* “Neural Computation and Adaptive Perception”.
* Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio (“Canadian mafia”).

— Unsupervised successes: “deep belief networks” and “autoencoders”.
* Could be used to initialize deep neural networks.
* https://www.youtube.com/watch?v=KuPaiOogiHk

B PCA Autoencaber...

Interban! k market: S moneta economic

. ¥ 3},: e K
3
¥



https://www.youtube.com/watch?v=KuPai0ogiHk

2010s: DEEP LEARNING!!!

* Bigger datasets, bigger models, parallel computing (GPUs/clusters).
— And some tweaks to the models from the 1980s.

 Huge improvements in automatic speech recognition (2009).
— All phones now have deep learning.

 Huge improvements in computer vision (2012).
— Changed computer vision field almost instantly.
— This is now finding its way into products. L _ | B person

chair




2010s: DEEP LEARNING!!!

 Media hype:

— “How many computers to identify a cat? 16,000”
New York Times (2012).

— “Why Facebook is teaching its machines to think like humans”
Wired (2013).

— “What is ‘deep learning” and why should businesses care?”
Forbes (2013).

— “Computer eyesight gets a lot more accurate”
New York Times (2014).

e 2015: huge improvement in language understanding.



ImageNet Challenge

* Millions of labeled images, 1000 object classes.
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ImageNet Challenge

* Object detection task:

Image classification
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ImageNet Challenge

* Object detection task: Ilmage classification
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ImageNet Challenge

* Object detection task:
— Single label per image.
— Humans: ~5% error.

Classification error
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ImageNet Challenge

* Object detection task: Ilmage classification
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ImageNet Challenge

+ Object detection task: Ilmage clasmflcannnl
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ImageNet Challenge

Object detection task:

— Single label per image.

— Humans: ~5% error.

2015: Won by Microsoft Research Asia

— 3.6% error.

— 152 layers.

2016: Chinese University of Hong Kong:
— Ensembles of existing methods.

2017: fewer entries, organizers decided this would be last year.



Summary

Neural networks learn features z for supervised learning.

Sigmoid function avoids degeneracy by introducing non-linearity.
Biological motivation for (deep) neural networks.

Deep learning considers neural networks with many hidden layers.
Unprecedented performance on difficult pattern recognition tasks.

Next time:
— Training deep networks.



Why z. = Wx;?

In PCA we had that the optimal Z = XWT(WWT)-L,

If W had normalized+orthogonal rows, Z = XW' (since WW' =1).
— So z, = Wx. in this normalized+orthogonal case.

Why we would use z, = Wx; in neural networks?
— We didn’t enforce normalization or orthogonality.

The value WH(WWT')1 is just “some matrix”.
— You can think of neural networks as just directly learning this matrix.



“Artificial” Neural Nets vs. “Real” Networks Nets

* Artificial neural network:
— X, is measurement of the world.
— z, is internal representation of world.
— y. is output of neuron for classification/regression.

e Real neural networks are more complicated:

— Timing of action potentials seems to be important.
e “Rate coding”: frequency of action potentials simulates continuous output.

— Neural networks don’t reflect sparsity of action potentials.

— How much computation is done inside neuron?

— Brain is highly organized (e.g., substructures and cortical columns).
— Connection structure changes.

— Different types of neurotransmitters.




Cool Picture Motivation for Deep Learning

* Faces might be composed of different “parts”:
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Cool Picture Motivation for Deep Learning

* First layer of z trained on 10 by 10 image patches:
R SBIMNTT ) A2 3 Gabor i /fers
» ) .\

e Attempt to visualize second layer:
— Corners, angles, surface boundaries?

 Models require many tricks to work.
— We'll discuss these next time.




Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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e Visualization of second and third layers trained on specific objects:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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* Visualization of second and third layers trained on specific objects:
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

ol ] NN ANV P guwm,m,\

faces

elephants

* Visualization of second and third layers trained on specific objects
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches

el HIN ANV Y

* Visualization of second and third layers trained on specific objects
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches

el HIN ANV Y
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* Visualization of second and third layers trained on specific objects
O ACBEIN=
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