CPSC 340:
Machine Learning and Data Mining

Multi-Dimensional Scaling
Fall 2017



Admin

* Assignment 4:
— 1 late day for tonight, 2 late days for Wednesday.

* Assignment 5:
— Due Monday of next week.

* Final:
— Details and previous exams posted on Piazza.



Last Time: Multi-Dimensional Scaling

* PCA for visualization:
— We’re using PCA to get the location of the z, values.
— We then plot the z, values as locations in a scatterplot.

* Multi-dimensional scaling (MDS) is a crazy idea:
— Let’s directly optimize the pixel locations of the z values.

* “Gradient descent on the points in a scatterplot”.

— Needs a“cost” function saying how “good” the z, Ioca’gions are.
* Traditional MDS cost function:NCA 77{'7 to moke s(qH{,, ot
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

{(Z) Zf (”z -2l = lly. = )()“)

1= ‘J""’

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)= 25 (-2~ lly, - xI1)*

1= ‘J""’

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

{(Z) Zf (”z -2l = lly. = )()“)

= ‘J""’

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

{(Z) Zf (”z -2l = lly. = )()“)

1= ‘J""’

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..

XX x x X (7(/5( PRI TEDO— 2,



Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.

£(2)= 25 (-2~ lly, - xI1)*

1= ‘J""’

* Cannot use SVD to compute solution:
— Instead, do gradient descent on the z. values.
— You “learn” a scatterplot that tries to visualize high-dimensional data.
— Not convex and sensitive to initialization.



Different MDS Cost Functions

 MDS default objective: squared difference of Euclidean norms:

£(z2)= Zi (2 - ~2ill = lly; = x)H)
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* But we can make z, match different distances/similarities:

f(2)= zz d3(Lal2,2;) = dilx,x))
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— Where the functions are not necessarily the same:
* d, is the high-dimensional distance we want to match.
* d, is the low-dimensional distance we can control.
* d, controls how we compare high-/low-dimensional distances.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:
£(2)= f 2 d3(dalai)25) — dy(x,x;))
|J-l |
* “Classic” MDS uses d,(x;x) = x;'x; and d,(z,z) = 7'z,
— We obtain PCA in this special case (for centered x;).
— Not a great choice because it’s a linear model.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:

‘F(Z) = f,\ £ 43(12(2'.)2)) - d\(X;)XJ))

1= j’;l*l

* Another possibility: dy(x,x) = | |x;— x| | and d,(z;,z)) = [ [z;— 7| |.
— The z, approximate the high-dimensional L;-norm distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so Iarge/small distances are more comparable.
]C Z) Z 2 ( &1(2,) )) J (x x)))

— Denominator reduces focus on large distances.




PC 2(8.8% var.)

Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so large/small distances are more comparable.
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Learning Manifolds

Consider data that lives on a low-dimensiona
 Example is the ‘Swiss roll’:
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Learning Manifolds

e Consider data that lives on a low-dimensional “manifold”.
— With usual distances, PCA/MDS will not discover non-linear manifolds.




Learning Manifolds

e Consider data that lives on a low-dimensional “manifold”.

— With usual distances, PCA/MDS will not discover non-linear manifolds.

* We need geodesic distance: the distance through the manifold.

':.'_'7' TS
=
Illh‘

e LT ame M y n
T .‘___-" :;‘-r ) .:'_I_. -:F—d..:- \-‘Ae
M T B A — e
e ho e LN

Fantl




Manifolds in Image Space

e Consider slowly-varying transformation of image:
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* Images are on a manifold in the high-dimensional space.
— Euclidean distance doesn’t reflect manifold structure.
— Geodesic distance is distance through space of rotations/resizings.



ISOMAP

* |ISOMAP is latent-factor model for visualizing data on manifolds:
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Digression: Constructing Neighbour Graphs

* Sometimes you can define the graph/distance without features:
— Facebook friend graph.
— Connect YouTube videos if one video tends to follow another.

* But we can also convert from features x; to a “neighbour” graph:

— Approach 1 (“epsilon graph”): connect x; to all x; within some threshold e.
* Like we did with density-based clustering.

— Approach 2 (“KNN graph”): connect x; to x; if:
* X is a KNN of x; OR x; is @ KNN of x..

— Approach 2 (“mutual KNN graph”): connect x; to x; if:
* % is a KNN of x; AND x; is a KNN of x;.



Converting from Features to Graph

Data points




ISOMAP

* |ISOMAP is latent-factor model for visualizing data on manifolds:
1. Find the neighbours of each point.

* Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:

* Usually distance between neighbours.

3. Compute weighted shortest path between all points.{ |
 Dijkstra or other shortest path algorithm.

4. Run MDS using these distances. |




ISOMAP

* ISOMAP can “unwrap” the roll:
— Shortest paths are approximations to geodesic distances.
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* Sensitive to having the right graph:
— Points off of manifold and gaps in manifold cause problems.



ISOMAP on Hand Images

Fingers extension

Wrist rotation

* Related method is “local linear embedding”.



PCA

Sammon’s Map vs. ISOMAP vs. PCA
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE

gavv\mo/\ MC("’

Vo
PRy
"+ o
]
PR
+
s
Sk
e 0,
oa
oy
o
%

*
3% »

¥ -;' + .i-;‘?
e
facd
}d‘
¥+
Oy e
oy
k
5
s
L)
o
L]

nef

y, (2'50(”‘/1"1{ olo

know The label.

per Viseij

S~

Rememée( Ths & unsu



Sammon’s Map vs. ISOMAP vs. t-SNE
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ISOMAP vs. t-SNE

Sammon’s Map vs.
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ISOMAP vs. t-SNE

Sammon’s Map vs.
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t-Distributed Stochastic Neighbour Embedding

* One key idea in t-SNE:
— Focus on neighbour distances by allowing large variance in large distances.
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t-Distributed Stochastic Neighbour Embedding

* t-SNE is a special case of MDS (specific d,, d,, and d, choices):

— d,: for each x;, compute probability that each x; is a ‘neighbour”.
* Computation is similar to k-means++, but most weight to close points (Gaussian).
* Doesn’t require explicit graph.

— d,: for each z, compute probability that each z; is a ‘neighbour’.

* Similar to above, but uses student’s t (grows really slowly with distance).
* Avoids ‘crowding’, because you have a huge range that large distances can fill.

— d;: Compare x; and z; using an entropy-like measure:
* How much ‘randomness’ is in probabilities of x, if you know the z, (and vice versa)?

* |nteractive demo: https://distill.pub/2016/misread-tsne



https://distill.pub/2016/misread-tsne

t-SNE on Wikipedia Articles




t-SNE on Product Features




t-SNE on Leukemia Heterogeneity

Not manually gated @ CD4Tcells @ CD8Tcells
® CD20+Bcells CD20-Bcells @ CD11b- Monocytes
® CD11b+ Monocytes @ NK cells

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/



End of Part 4: Key Concepts

e We discussed linear latent-factor models:

f(Ww,2)= > 54 (W'zi = X )2
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* Represent ‘X’ as linear combination of latent factors ‘w_’.

— Latent features ‘z; give a lower-dimensional version of each ‘x’”.

— When k=1, finds direction that minimizes squared orthogonal distance.
e Applications:

— Outlier detection, dimensionality reduction, data compression, features for linear
models, visualization, factor discovery, filling in missing entries.



End of Part 4: Key Concepts

We discussed linear latent-factor models:

P(W2)=2 2 (Wa= %)}
Principal component analysis (PCA):
— Often uses orthogonal factors and fits them sequentially (via SVD).
Non-negative matrix factorization:
— Uses non-negative factors giving sparsity.
— Can be minimized with projected gradient.
Many variations are possible:

— Different regularizers (sparse coding) or loss functions (robust/binary PCA).
— Missing values (recommender systems) or change of basis (kernel PCA).



End of Part 4: Key Concepts

* We discussed multi-dimensional scaling (MDS):
— Non-parametric method for high-dimensional data visualization.
— Tries to match distance/similarity in high-/low-dimensions.

e “Gradient descent on scatterplot points”.

 Main challenge in MDS methods is “crowding” effect:
— Methods focus on large distances and lose local structure.

e Common solutions:
— Sammon mapping: use weighted cost function.
— ISOMAP: approximate geodesic distance using via shortest paths in graph.
— T-SNE: give up on large distances and focus on neighbour distances.



Summary

Different MDS distances/losses/weights usually gives better results.
Manifold learning focuses on low-dimensional curved structures.

ISOMAP is most common approach:
— Approximates geodesic distance by shortest path in weighted graph.

t-SNE is promising new data MDS method.

Next time: deep learning.



Does t-SNE always outperform PCA?

* Consider 3D data living on a 2D hyper-plane:
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* PCA can perfectly capture the low-dimensional structure.
* T-SNE can capture the local structure, but can “twist” the plane.
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Latent-Factor Representation of Words

For natural language, we often represent words by an index.
— E.g., “cat” is word 124056 among a “bag of words”.

But this may be inefficient:
— Should “cat” and “kitten” share parameters in some way?

We want a latent-factor representation of individual words:
— Closeness in latent space should indicate similarity.
— Distances could represent meaning?

Recent alternative to PCA/NMF is word2vec...



Using Context

* Consider these phrases:
— “the cat purred”

— “the kitten purred”

— “black cat ran”
— “black kitten ran”

 Words that occur in the same context likely have similar meanings.

* Word2vec uses this insight to design an MDS distance function.



Word2Vec

Two variations on objective in word2vec:
— Try to predict word from surrounding words (continuous bag of words).
— Try to predict surrounding words from word (skip-gram).
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

Train latent-factors to solve one of these supervised learning tasks.



Word2Vec

In both cases, each word ‘i’ is represented by a vector z..
In continuous bag of words, we optimize the following likelihood:

P(X| ' Xs\.ﬂwi> _\)el, ] (x,-' )()> (/V\le/omc/eme a;fumff/bvb
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Apply gradient descent to logarithm:
— Encourages z;'z; to be big for words in same context (making z; close to z,).
— Encourages zisz to be small for words not appearing in same context (makes z; and z, far).

For CBOW, denominator sums over all words.

For skip-gram it will be over all possible surrounding words.

— Common trick to speed things up: sample terms in denominator.
* “Negative sampling”.



Word2Vec Example
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* Distances between vectors might represent semantics.



Word2Vec

Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table [4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship

Example 1 Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

Italy: Rome

small: larger

Japan: Tokyo
cold: colder
Baltimore: Maryland Dallas: Texas
Messi: midfielder
Berlusconi: Italy

Mozart: violinist
Merkel: Germany

zinc: Zn gold: Au
Sarkozy: Nicolas Putin: Medvedev
Google: Android IBM: Linux

IBM: McNealy
France: tapas

Google: Yahoo
Germany: bratwurst

Florida: Tallahassee
quick: quicker
Kona: Hawaii
Picasso: painter
Koizumi: Japan

uranium: plutonium
Obama: Barack
Apple: iPhone

Apple: Jobs
USA: pizza

Table

— 2
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+ _
iy =

, = 27
ly ~ £

[B]shows words that follow various relationships. We follow the approach described above: the

relationship is defined by subtracting two word vectors, and the result is added to another word. Thus
for example, Paris - France + Italy = Rome. As it can be seen, accuracy is quite good, although

 Word vectors for 157 languages here.


https://fasttext.cc/docs/en/crawl-vectors.html

Multiple Word Prototypes

 What about homonyms and polysemy?

— The word vectors would need to account for all meanings.

 More recent approaches:
— Try to cluster the different contexts where words appear.
— Use different vectors for different contexts. /

Xl o
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Multiple Word Prototypes
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Graph Drawing

* A closely-related topic to MDS is graph drawing:
— Given a graph, how should we display it?
— Lots of interesting methods: https://en.wikipedia.org/wiki/Graph drawing



https://en.wikipedia.org/wiki/Graph_drawing

e Recall the univariate chain rule:

Bonus Slide: Multivariate Chain Rule
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Bonus Slide: Multivariate Chain Rule for MDS

e General MDS formulatlon

”\;%“ 232 gCdiG,x), 4y (2;,2))
* Using multivariate chain rule we have:
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