CPSC 340:
Machine Learning and Data Mining

Recommender Systems
Fall 2017

Admin

* Assignment 4:
— Due tonight, 1 late day for Monday, 2 late days for Wednesday.

* Assignment 5:
— Posted, due Monday of last week of classes

Last Few Lectures: Latent-Factor Models

* We’'ve been discussing latent-factor models of the form:

n d _
1 W 2)= 22 (F z =x;)?
1=¢)=
* We get different models under different conditions:
— K-means: each z, has one ‘1" and the rest are zero.
— Least squares: we only have one variable (d=1) and the z, are fixed.
— PCA: no restrictions on W or Z.

* Orthogonal PCA: the rows w_ have a norm of 1 and have an inner product of zero.

— NMF: all elements of W and Z are non-negative.

Beyond Squared Error

* Our (unregularized) objective for latent-factor models (LFM):

+(w2)= 2 552 —x)?

1=)
* As before, there are alternatives to squared error.

rod _ ;
Q(W)z> = i i |055 C(\,VJ)'Z'))('\)> érro/ fdr /),eJichnL) V'/J Z|-
1 =1 §=! v\</ when fﬂ(Vale U XU.

* |If X consists of +1 and -1 values, we could use logistic loss:

{\(V‘SZ?: % f lo()('+exP(‘)(i)'(\afV2i)>

TNty

Robust PCA

 Robust PCA methods use the absolute error:

* Will be robust to outliers in the matrix X".
* Encourages “residuals” r; to be exactly zero. X)2

— Non-zero r; are where the “outliers” are.

Arr'yévq robust FA
Fo video {rames

Robust PCA

e Miss Korea contestants and robust PCA:

Original image Low rank Sparse error
reconstruction

http://jbhuang0604.blogspot.ca/2013/04/miss-korea-2013-contestants-face.html

Variations on Latent-Factor Models

 We can use all our tricks for linear regression in this context:
N
FW2)= §E (o) * A3 520 + b 22N
=15~

i = ¢l A AN
* Absolute loss gives robust PCA that is less sensitive to outliers.

 We can use L2-regularization.

— Though only reduces overfitting if we regularize both ‘W’ and ‘Z’.
* We can use L1-regularization to give sparse latent factors/features.
* We can use logistic/softmax/Poisson losses for discrete X
* Can use change of basis to learn non-linear latent-factor models.

Beyond NMF: Topic Models

 For modeling data as combinations of non-negative parts,
NMF has largely replaced by “topic models”.

— A “fully-Bayesian” model where sparsity arises naturally.
— Most popular example is called “latent Dirichlet allocation” (CPSC 540).

Topic proportions and
assignments

gene 0.04
dna 0.02 . . - e
denetic: .81 Seeking Life’s Bare (Genetic) Necessities
s COLD SPRING HARBOR, NEW YORK— we not all char far apare.” especually
How i loes an [RSHNH ool 1 omparison to the 73,0) .
__/— SRR Last week ar the genome meetin . notes Siv Anders il
here. two genome rescarchers with £ Iy University m S0 = ¢ O ﬁ
Jifferent approaches presented complemen- | 8 TIUL Coming up with 7o
iy views of the basic g ne for e nswer may b mnj
Ine research team, us nal by icula fore @
es to compare knows conclded more e o 4
ton DR o be sustained witk S e | W be o f organisim
just 250 gen til | ! 1 xplain
Juir ner T Mushegia
I) 1 1wl N (
im i r Biotech Infon i
v r thi i ring 3
' 1 lotl
hatar

Topics Documents

(pause)

Recommender System Motivation: Netflix Prize

e Netflix Prize:

— 100M ratings from 0.5M users on 18k movies.

— Grand prize was $S1M for first team to reduce squared error by 10%.
— Started on October 2" 2006.

— Netflix’s system was first beat October 8t,

— 1% error reduction achieved on October 15,

— Steady improvement after that.

* ML methods soon dominated.

— One obstacle was ‘Napolean Dynamite’ problem:
 Some movie ratings seem very difficult to predict.
e Should only be recommended to certain groups.

Lessons Learned from Netflix Prize

 Prize awarded in 2009:

— Ensemble method that averaged 107 models.
— Increasing diversity of models more important than improving models.

AT

> (T
Deu{\\i'\y’r)ql'u\V|; (Chaos 100,000 &
0
ONE_ MiLLION %

* Winning entry (and most entries) used collaborative filtering:
— Methods that only looks at ratings, not features of movies/users.

* Asimple collaborative filtering method that does really well (7%):

— “Regularized matrix factorization”. Now adopted by many companies.

Motivation: Other Recommender Systems

e Recommender systems are now everywhere:
— Music, news, books, jokes, experts, restaurants, friends, dates, etc.

* Main types of approaches:
1. Content-based filtering.

e Supervised learning:
— Extract features x; of users and items, building model to predict rating y; given x..
— Apply model to prediction for new users/items.

’ o

* Example: G-mail’s “important messages” (personalization with “local” features).

2. Collaborative filtering.

* “Unsupervised” learning (have label matrix ‘Y’ but no features):

— We only have labels y; (rating of user i’ for movie j’).

* Example: Amazon recommendation algorithm.

Collaborative Filtering Problem

e Collaborative filtering is ‘filling in” the user-item matrix:

|
! fo N Lan %ern'

T2y 3 2 33| .
(= |z 7 & [P hen Moyl
2 ¢ 5 @ c
=2 3 3 7 g 7
e O~ -
Movie

* We have some ratings available with values {1,2,3,4,5}.
 We want to predict ratings “?” by looking at available ratings.

Collaborative Filtering Problem

e Collaborative filtering is ‘filling in” the user-item matrix:

”CTff?/\ Lar\)[e/‘n"

7 4 3 2 {W ’)

(= llczT 7 & [b fows
A B) \\‘fj ?C"
L > L
<2 3 3 7 W

\"""Q S lar Mmovie

* What rating would “Ryan Reynolds” give to “Green Lantern”?

— Why is this not completely crazy? We may have similar users and movies.

Matrix Factorization for Collaborative Filtering

Our standard latent-factor model for entries in matrix ‘Y’:

Y % Z\/\/)/,6 o~ (W)TZ,-

nxd nxk kx{

User ‘i’ has latent features z..
Movie J" has latent features w..
Our loss functions sums over available ratings ‘R’:
2w = (% (e = yi)° + Azl + _’12_2 w2
And we add L2-regularization to both types of features.
— Basically, this is regularized PCA on the available entries of Y.

Adding Global/User/Movie Biases

e Qur standard latent-factor model for entries in matrix ‘Y’:
N

Vi = (W)'z,

* Sometimes we don’t assume the y; have a mean of zero:
— We could add bias B reflecting average overall rating:
£, 7
— We could also add a user-specific bias 3, and item-specific bias (3.

A
_ | N
Vi< BB B+
* Some users rate things higher on average, and movies are rated better on average.
* These might also be regularized.

Beyond Accuracy in Recommender Systems

* Winning system of Netflix Challenge was never adopted.

e Other issues important in recommender systems:

— Diversity: how different are the recommendations?
* If you like ‘Battle of Five Armies Extended Edition’, recommend Battle of Five Armies?
* Even if you really really like Star Wars, you might want non-Star-Wars suggestions.

— Persistence: how long should recommendations last?

* If you keep not clicking on ‘Hunger Games’, should it remain a recommendation?
— Trust: tell user why you made a recommendation.

* Quora gives explanations for recommendations.
— Social recommendation: what did your friends watch?

— Freshness: people tend to get more excited about new/surprising things.

 Collaborative filtering does not predict well for new users/movies.
— New movies don’t yet have ratings, and new users haven’t rated anything.

Content-Based vs. Collaborative Filtering

* Our latent-factor approach to collaborative filtering (Part 4):
N

%" = (W',
”L‘"‘“”;\ fee W":\’ of N;?;J \”<-47 Thidden’ {\PQ“/W?) of vser

— Learns about each user/movie, but can’t predict on new users/movies.

* Alinear model approach to content-based filtering (Part 3):
N

.T -—
L= - T
Yy~ WA Uor sl =i,
S(/lffer.)eJ 'fﬁfﬂh‘, Se /wr
— Here x; is a vector of features for the movie/user.

* Usual supervised learning setup: ‘y’ would contain all the y;, X would have x; as rows.
— Can predict on new users/movies, but can’t learn about each user/movie.

Hybrid Approaches

* Hybrid approaches combine content-based/collaborative filtering:
— SVDfeature (won “KDD Cup” in 2011 and 2012).

/7 ‘» E)drc{ ‘Fo«(,?lofj nwe ,earr\

N
yt\ = /g N g’ * é +WTXJ M (W) 4 for specific wsers and wovies

T \Yi W\ L’\’\/\}k“d YLafent feuures 2,

/N
A\/ /e m"fn : 'Pof‘ er [an
M:};’eq”) é\: :ﬁ /?)vtf&) l)Ln’lPer hmt(el M“/l'/ ﬁpq?luml s
or /
USers Inavies %mw‘ movie /j! Wed on “Ser fmoie S
’Pdf VWOVle J

_\iy ‘FOOF}WQ X»)
§+aWJafJ (- k—D/\/

§u‘»ervxer (eamml) Can /Jredd for new uSed/Mov'd

e

— Note that x; is a feature vector. Also, ‘W’ and ‘wW” are different parameters.

Stochastic Gradient for SVDfeature

e Common approach to fitting SVDfeature is stochastic gradient.

* Previously you saw stochastic gradient for supervised learning:

)
—(,Aﬁoﬁﬁ a fomc/orv\ e»l’am/o /e /:

— (/(;(Jqfe Ioa/a,mef‘{/s /w\ (Aj)y,? gral/}m?‘ O‘tD f)/am/o/c /i\

e Stochastic gradient for SVDfeature (formulas as bonus):

/.
~Choose a vandonn uiger 1 and o V“W"/OW\ }PV°JV'L7L i

“—'Vysclu.,.i‘.’ P7 ‘Bj) B)) W) Z,") qv)J WJ' loanJ or 7Llneif quo//'JVﬂL
{for Thes lASer'froc/ud.

Social Regularization

* Many recommenders are now connected to social networks.
— “Login using you Facebook account”.

* Often, people like similar movies to their friends.

* Recent recommender systems use social regularization.
— Add a “regularizer” encouraging friends” weights to be similar:

A 2z -5

¢ DE
— |f we get a new user, recommendations are based on friend’s preferences.

(pause)

Latent-Factor Models for Visualization

* PCA takes features x, and gives k-dimensional approximation z..

* If kis small, we can use this to visualize high-dimensional data.

0.06

-0.08

0.04 |

0.02 -

0.02 |-

004 §-

006 -

France @3 o =
o *+5 + Yugoslavia
-

>
~

« -."1
o R R
. - -
R o)
B, ‘a% “*, _Greece
6 A.‘% -

+
v :
’
s
/ﬁ: .
y r
¢

1 1 1
0.05 0 0.05

1
0.1

015

Motivation for Non-Linear Latent-Factor Models

* But PCA is a parametric linear model
 PCA may not find obvious low-dimensional structure.

AADDYYTI<LALLL PPV AT P OCR

Aj A: P’: > Y’ vvv<<¢& A- b b V \ 4 :0:0:...0.°...‘o..: saririsss
AADDY YT T4 L4 L0PPY n ':':'::.'-':'..'.:':‘E:::.'...'.-'.:.'
AIAD D Y viv|w|<|</4 42 L P VY e e St et
AAN D vvivici</a/a/a2bpv]y Jlre .-,.:,.;‘.;.g: e e
AADMD Y Y TiTi<<2lasbbby ,‘_’;:.’.‘;..'..-3..-::‘, ’ ""\‘q{.{.{.}

AADMD P Y T CL4LibbpbpyY [:> '"':::.'.’.::'*’(
AlannIvlvlv|ale/e|e[a]aa[pv|v :::::2::‘:':‘:‘.‘2

AN vr|v/e[e|a|e|alals[pry "'.'.'::-:'.‘.'-?"\ WC W -l,
AANMDM v v v |e|e|e|aaalblplriv eefiles Sl Y ,'.:'..:}‘ » LV‘_
AlAMN[dvlvsle|<|e|lala|a|blp vy "..'.,.'.‘..'..-" ,
Alalnnwlwlslvl<l<lalalz] NNNE .'..:°::°:::::::::‘::? soﬂe.}‘””?
‘‘‘‘‘‘ 38 A R B AR RS B R AR A AR AR AR .:.::..:..'.: |-|)\f@ '}Lis.

* We could use change of basis or kernels: but still need to pick basis.

Multi-Dimensional Scaling

* PCA for visualization:
— We’re using PCA to get the location of the z, values.
— We then plot the z, values as locations in a scatterplot.

* Multi-dimensional scaling (MDS) is a crazy idea:
— Let’s directly optimize the pixel locations of the z values.

* “Gradient descent on the points in a scatterplot”.

— Needs a “cost” function saying how “good” the z, Ioca/tions are.
* Traditional MDS cost function:/\/CA 77{'7 to moke s(qhﬂ,, ot
— non “ — 2 iiS?laVl(w Mmatihn h k-diie e |
-F(Z)" z 2 (Z,-"ZJ'“ “)q "’x)'”) b roi

1=\ :)=i+’ \/\/‘\/ —— J’Uﬁwc “
Ny~ dishance in —> D5S'/W‘€ bej\wﬂ\ /or)'WZY

sum oVt ' .
paics ofgﬁw{o Sedierdd N origual 4" dimensions

MDS Method (“Sammon Mapping”) in Action

v
s®
-

* Unfortunately, MDS often does not work well in practice.

Summary

Robust PCA allows identifying certain types of outliers.
Recommender systems try to recommend products.

Collaborative filtering tries to fill in missing values in a matrix.
— Matrix factorization is a common approach.

Multi-dimensional scaling is non-parametric latent-factor model.

Next time: fixing MDS and discovering new types of Leukemia cells.

SVDfeature with SGD: the gory details

| o N . ~ 7)’
")) \/v\/
A%
\/rcf«\fe bised on random (/')J')
F=F i w = T X (g Xy & ldded e,
, fime.
bi= pi= oxri; 2iT 2oL yw
b3 = F> ~ WEwi-wriz S)
L/ﬂ/\/ "‘) |
L |VF<J"f‘°f are The Sﬁﬁ"f’; VVJqf¢f fo,
)”‘1] ﬂ 15 fx'}"f_ﬁ)ﬂ' \Af«]q"lle Vhile Py aud g) aAre f{)eciv[ic User
only updated £ the spreific wrr ™ prgduct and prodadd,

(AAJM(] /e‘)m‘uigaﬂ;w\ q”j Gn eﬂru '}f/w.)

Tensor Factorization

e Tensors are higher-order generalizations of matrices:

| v

g

e I
d »

* Generalization of matrix factorization is tensor factorization:

k
avd
YIJMN f V‘{jc Zic e
c=i

e Useful if there are other relevant variables:

 Instead of ratings based on {user,movie}, ratings based {user,movie,age}.

e Useful if ratings change over time.

!

N

Warm-Starting

We've used data {X,y} to fit a model.
We now have new training data and want to fit new and old data.

Do we need to re-fit from scratch?

This is the warm starting problem.

— It’s easier to warm start some models than others.

Easy Case: K-Nearest Neighbours and Counting

e K-nearest neighbours:
— KNN just stores the training data, so just store the new data.

* Counting-based models:
— Models that base predictions on frequencies of events.
— E.g., naive Bayes.

. wit of ijfn any w-aud o
— Just update the counts: F(Vicodin ,Sram): (ownt of fuicelinspanf in e and olf Ak

(OW’F} o'f ,chm n Néw Cﬂlc/ oéj (Iq/

— Decision trees with fixed rules: just update counts at the leaves.

Medium Case: L2-Regularized Least Squares

e |L2-regularized least squares is obtained from linear algebra:
w= (X A7 (Xy)

— Cost is O(nd? + d3) for ‘n’ training examples and ‘d’ features.

* Given one new point, we need to compute:
— X'y with one row added, which costs O(d).
— Old X™X plus x.x.", which costs O(d?).
— Solution of linear system, which costs O(d3).
— So cost of adding ‘t” new data point is O(td3).

e With “matrix factorization updates”, can reduce this to O(td?).
— Cheaper than computing from scratch, particularly for large d.

Medium Case: Logistic Regression

* We fit logistic regression by gradient descent on a convex function.

* With new data, convex function f(w) changes to new function g(w).

n¥ |

fl)= 2 £ gD = 2 £

(=)
* If we don’t have much more data, ‘t" and ‘g’ will be “close”.

— Start gradient descent on ‘g” with minimizer of ‘.
— You can show that it requires fewer iterations.

7(@
Flu

Hard Cases: Non-Convex/Greedy Models

For decision trees:
— “Warm start”: continue splitting nodes that haven’t already been split.
— “Cold start”: re-fit everything.

Unlike previous cases, this won’t in general give same result as re-fitting:
— New data points might lead to different splits higher up in the tree.

Intermediate: usually do warm start but occasionally do a cold start.

Similar heuristics/conclusions for other non-convex/greedy models:
— K-means clustering.
— Matrix factorization (though you can continue PCA algorithms).

Motivation for Topic Models

 Want a model of the “factors” making up documents.
— Instead of latent-factor models, they’re called topic models.
— The canonical topic model is latent Dirichlet allocation (LDA).

Suppose you have the following set of sentences:

® | like to eat broccoli and bananas.

® | ate a banana and spinach smoothie for breakfast.

® Chinchillas and kittens are cute.

® My sister adopted a kitten yesterday.

® | ook at this cute hamster munching on a piece of broccoli.

What is latent Dirichlet allocation? It's a way of automatically discovering topics that these sentences contain. For example, given these sentences and asked for 2 topics, LDA might produce
something like

* Sentences 1 and 2: 100% Topic A

* Sentences 3 and 4: 100% Topic B

* Sentence 5. 60% Topic A, 40% Topic B

* Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ... (at which point, you could interpret topic A to be about food)
* Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ... (at which point, you could interpret topic B to be about cute animals)

— “Topics” could be useful for things like searching for relevant documents.

Term Frequency — Inverse Document Frequency

In information retrieval, classic word importance measure is TF-IDF.

First part is the term frequency tf(t,d) of term ‘t’ for document ‘d’.

— Number of times “word” ‘t” occurs in document ‘d’, divided by total words.

— E.g., 7% of words in document ‘d” are “the” and 2% of the words are “Lebron”.

Second part is document frequency df(t,D).

— Compute number of documents that have ‘t’ at least once.
— E.g., 100% of documents contain “the” and 0.01% have “LeBron”.

TF-IDF is tf(t,d) *log(1/df(t,D)).

4

Term Frequency — Inverse Document Frequency

* The TF-IDF statistic is tf(t,d)*log(1/df(t,D)).
— It’s high if word ‘t” happens often in document ‘d’, but isn’t common.
— E.g., seeing “LeBron” a lot it tells you something about “topic” of article.
— E.g., seeing “the” a lot tells you nothing.

 There are *many™ variations on this statistic.
— E.g., avoiding dividing by zero and all types of “frequencies”.

e Summarizing ‘n” documents into a matrix X:
— Each row corresponds to a document.
— Each column gives the TF-IDF value of a particular word in the document.

Latent Semantic Indexing

* TF-IDF features are very redundant.
— Consider TF-IDFs of “LeBron”, “Durant”, “Harden”, and “Kobe”.

— High values of these typically just indicate topic of “basketball”.

 We can probably compress this information quite a bit.

* Latent Semantic Indexing/Analysis:
— Run latent-factor model (like PCA or NMF) on TF-IDF matrix X.
— Treat the principal components as the “topics”.
— Latent Dirichlet allocation is a variant that avoids weird df(t,D) heuristic.

