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Admin

• Assignment 4:

– Due Friday.

• Assignment 5:

– Posted, due Monday of last week of classes



Last Time: PCA with Orthogonal/Sequential Basis

• When k = 1, PCA has a scaling problem.

• When k > 1, have scaling, rotation, and label switching.

– Standard fix: use normalized orthogonal rows Wc of ‘W’.

– And fit the rows in order: 

• First row “explains the most variance” or “reduces error the most”.



Colour Opponency in the Human Eye

• Classic model of the eye is with 4 photoreceptors:

– Rods (more sensitive to brightness).

– L-Cones (most sensitive to red).

– M-Cones (most sensitive to green).

– S-Cones (most sensitive to blue).

• Two problems with this system:

– Not orthogonal.

• High correlation in particular between red/green.

– We have 4 receptors for 3 colours.

http://oneminuteastronomer.com/astro-course-day-5/
https://en.wikipedia.org/wiki/Color_visio



Colour Opponency in the Human Eye

• Bipolar and ganglion cells seem to code using “opponent colors”:

– 3-variable orthogonal basis:

• This is similar to PCA (d = 4, k = 3).

http://oneminuteastronomer.com/astro-course-day-5/
https://en.wikipedia.org/wiki/Color_visio
http://5sensesnews.blogspot.ca/



Colour Opponency Representation



Application: Face Detection

• Consider problem of face detection:

• Classic methods use “eigenfaces” as basis:
– PCA applied to images of faces.

https://developer.apple.com/library/content/documentation/GraphicsImaging/Conceptual/CoreImaging/ci_detect_faces/ci_detect_faces.html



Application: Face Detection



Eigenfaces

• Collect a bunch of images of faces under different conditions:



Eigenfaces
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VQ vs. PCA vs. NMF

• But how should we represent faces?

– Vector quantization (k-means).

• Replace face by the average face in a cluster.

• ‘Grandmother cell’: one neuron = one face.

• Can’t distinguish between people in the same cluster (only ‘k’ possible faces). 

• Almost certainly not true: too few neurons.



VQ vs. PCA vs. NMF

• But how should we represent faces?

– Vector quantization (k-means). 

– PCA (orthogonal basis).

• Global average plus linear combination of “eigenfaces”.

• “Distributed representation”.
– Coded by pattern of group of neurons: can represent infinite number of faces by changing zi.

• But “eigenfaces” are not intuitive ingredients for faces.
– PCA tends to use positive/negative cancelling bases.



VQ vs. PCA vs. NMF

• But how should we represent faces?

– Vector quantization (k-means). 

– PCA (orthogonal basis).

– NMF (non-negative matrix factorization):

• Instead of orthogonality/ordering in W, require W and Z to be non-negativity.

• Example of “sparse coding”:
– The zi are sparse so each face is coded by a small number of neurons.

– The wc are sparse so neurons tend to be “parts” of the object.



Representing Faces

• Why sparse coding?

– “Parts” are intuitive, and brains seem to use sparse representation.

– Energy efficiency if using sparse code.

– Increase number of concepts you can memorize?

• Some evidence in fruit fly olfactory system.

http://www.columbia.edu/~jwp2128/Teaching/W4721/papers/nmf_nature.pdf



Warm-up to NMF: Non-Negative Least Squares

• Consider our usual least squares problem:

• But assume yi and elements of xi are non-negative:

– Could be sizes (‘height’, ‘milk’, ‘km’) or counts (‘vicodin’, ‘likes’, ‘retweets’).

• Assume we want elements of ‘w’ to be non-negative, too:

– No physical interpretation to negative weights.

– If xij is amount of product you produce, what does wj < 0 mean?

• Non-negativity leads to sparsity...



Sparsity and Non-Negative Least Squares

• Consider 1D non-negative least squares objective:

• Plotting the (constrained) objective function:

• In this case, non-negative solution is least squares solution.



Sparsity and Non-Negative Least Squares

• Consider 1D non-negative least squares objective:

• Plotting the (constrained) objective function:

• In this case, non-negative solution is w = 0.



Sparsity and Non-Negativity

• Similar to L1-regularization, non-negativity leads to sparsity.

– Also regularizes: wj are smaller since can’t “cancel” out negative values.

• How can we minimize f(w) with non-negative constraints?

– Naive approach: solve least squares problem, set negative wj to 0.

– This is correct when d = 1.

– Can be worse than setting w = 0 when d ≥ 2.  



Sparsity and Non-Negativity

• Similar to L1-regularization, non-negativity leads to sparsity.

– Also regularizes: wj are smaller since can’t “cancel” out negative values.

• How can we minimize f(w) with non-negative constraints?

– A correct approach is projected gradient algorithm:

• Run a gradient descent iteration:

• After each step, set negative values to 0.

• Repeat.



Sparsity and Non-Negativity

• Similar to L1-regularization, non-negativity leads to sparsity.

– Also regularizes: wj are smaller since can’t “cancel” out negative values.

• How can we minimize f(w) with non-negative constraints?

– A correct approach is projected gradient algorithm:

– Similar properties to gradient descent:

• Guaranteed decrease of ‘f’ if αt is small enough.

• Reaches local minimum under weak assumptions (global minimum for convex ‘f’).
– Least squares objective is still convex when restricted to non-negative variables.

• Generalizations allow things like L1-regularization instead of non-negativity. 
(findMinL1.m)



Projected-Gradient for NMF

• Back to the non-negative matrix factorization (NMF) objective:

– Different ways to use projected gradient:
• Alternate between projected gradient steps on ‘W’ and on ‘Z’.

• Or run projected gradient on both at once.

• Or sample a random ‘i’ and ‘j’ and do stochastic projected gradient.

– Non-convex and (unlike PCA) is sensitive to initialization.
• Hard to find the global optimum.

• Typically use random initialization.



Application: Sports Analytics

• NBA shot charts:

• NMF (using “KL divergence” loss with k=10 and smoothed data).

– Negative
values would
not make 
sense here.

http://jmlr.org/proceedings/papers/v32/miller14.pdf



Application: Cancer “Signatures”

• What are common sets of mutations in different cancers?

– May lead to new treatment options.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588146/



Regularized Matrix Factorization

• For many PCA applications, ordering orthogonal PCs makes sense.

– Latent factors are independent of each other.

– We definitely want this for visualization.

• In other cases, ordering orthogonal PCs doesn’t make sense.

– We might not expect a natural “ordering”.

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf



Regularized Matrix Factorization

• More recently people have considered L2-regularized PCA:

• Replaces normalization/orthogonality/sequential-fitting.

– But requires regularization parameters λ1 and λ2.

• Need to regularize W and Z because of scaling problem:

– If you only regularize ‘W’ it doesn’t do anything:

• I could take unregularized solution, replace W by αW for a tiny α to
shrink ||W||F as much as I want, then multiply Z by (1/α) to get same solution.

– Similarly, if you only regularize ‘Z’ it doesn’t do anything.



Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

• Disadvantage of using L1-regularization over non-negativity:

– Sparsity controlled by λ1 and λ2 so you need to set these.

• Advantage of using L1-regularization:

– Negative coefficients usually make sense.

– Sparsity controlled by λ1 and λ2, so you can control amount of sparsity.



Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

• Many variations exist:

– Mixing L2-regularization and L1-regularization.

• Or normalizing ‘W’ (in L2-norm or L1-norm) and regularizing ‘Z’.

– K-SVD constrains each zi to have at most ‘k’ non-zeroes:

• K-means is special case where k = 1.

• PCA is special case where k = d.



Matrix Factorization with L1-Regularization

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf



Recent Work: Structured Sparsity

• “Structured sparsity” considers dependencies in sparsity patterns.

– Can enforce that “parts” are convex regions.

http://jmlr.org/proceedings/papers/v9/jenatton10a/jenatton10a.pdf



Summary

• Biological motivation for orthogonal and/or sparse latent factors.

• Non-negative matrix factorization leads to sparse LFM.

• Non-negativity constraints lead to sparse solution.

– Projected gradient adds constraints to gradient descent.

– Non-orthogonal LFMs make sense in many applications.

• L1-regularization leads to other sparse LFMs.

• Next time: the NetFlix challenge.



Latent-Factor Models for Image Patches

• Consider building latent-factors for general image patches:



Latent-Factor Models for Image Patches

• Consider building latent-factors for general image patches:

Typical pre-processing:

1. Usual variable centering 
2. “Whiten” patches.
(remove correlations)



Application: Image Restoration

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf



Latent-Factor Models for Image Patches

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters

Orthogonal bases don’t seem right:
• Few PCs do almost everything.
• Most PCs do almost nothing.

We believe “simple cells” in visual cortex use:

‘Gabor’ filters



Latent-Factor Models for Image Patches

• Results from a sparse (non-orthogonal) latent factor model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Latent-Factor Models for Image Patches

• Results from a “sparse” (non-orthogonal) latent-factor model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Recent Work: Structured Sparsity

• Basis learned with a variant of “structured sparsity”:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf


