CPSC 340: Machine Learning and Data Mining

Sparse Matrix Factorization Fall 2017

Admin

- Assignment 4:
 - Due Friday.

• Assignment 5:

Posted, due Monday of last week of classes

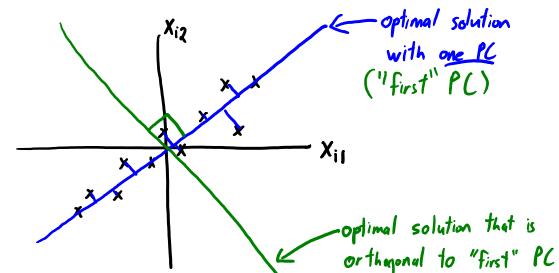
Last Time: PCA with Orthogonal/Sequential Basis

- When k = 1, PCA has a scaling problem.
- When k > 1, have scaling, rotation, and label switching.

– Standard fix: use normalized orthogonal rows W_c of 'W'.

$$||w_c||=1$$
 and $w_c^T w_c = 0$ for $c' \neq c$

- And fit the rows in order:
 - First row "explains the most variance" or "reduces error the most".

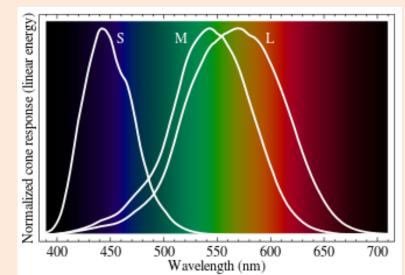


Colour Opponency in the Human Eye

- Classic model of the eye is with 4 photoreceptors:
 - Rods (more sensitive to brightness).
 - L-Cones (most sensitive to red).
 - M-Cones (most sensitive to green).
 - S-Cones (most sensitive to blue).
- Two problems with this system:
 - Not orthogonal.
 - High correlation in particular between red/green.
 - We have 4 receptors for 3 colours.

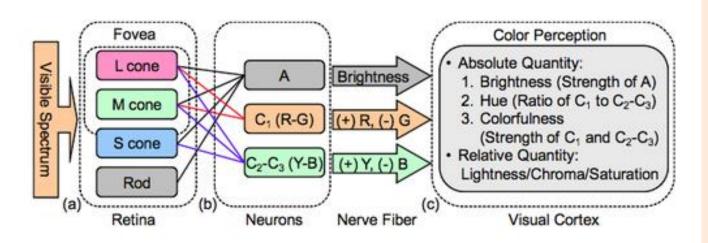
http://oneminuteastronomer.com/astro-course-day-5/ https://en.wikipedia.org/wiki/Color_visio





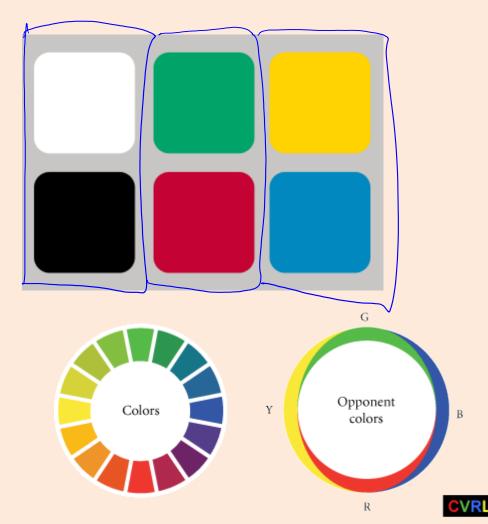
Colour Opponency in the Human Eye

- Bipolar and ganglion cells seem to code using "opponent colors":
 - 3-variable orthogonal basis:



• This is similar to PCA (d = 4, k = 3).

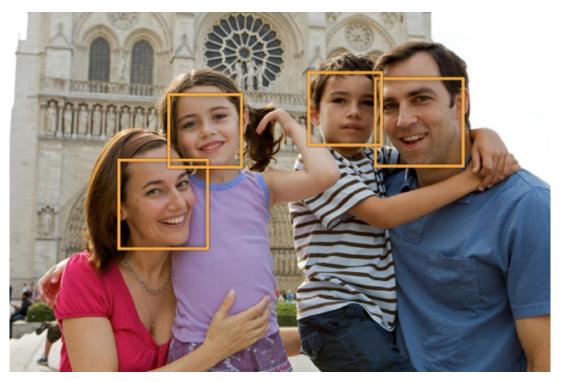
http://oneminuteastronomer.com/astro-course-day-5/ https://en.wikipedia.org/wiki/Color_visio http://5sensesnews.blogspot.ca/



Colour Opponency Representation Con represent 4 original values with these 3 zi values and For this pirel, eye gets 4 signals 'matrix W +w, + 142 W_{I} Third Second First now row row (4×1) (4×1 W (First PC) brightness blue/yellow redlgreen Analogous to means in k-means.

Application: Face Detection

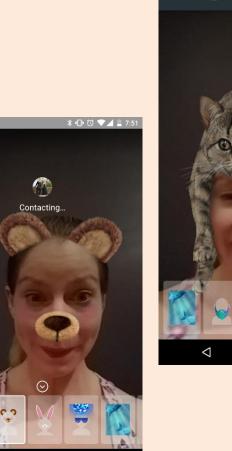
• Consider problem of face detection:



- Classic methods use "eigenfaces" as basis:
 - PCA applied to images of faces.

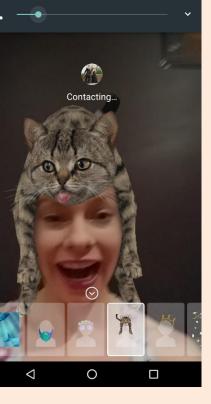
https://developer.apple.com/library/content/documentation/GraphicsImaging/Conceptual/CoreImaging/ci_detect_faces/ci_detect_faces.html

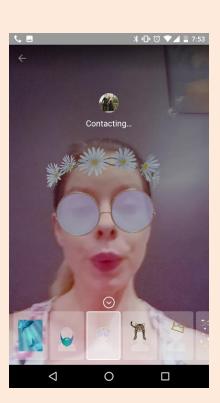
Application: Face Detection

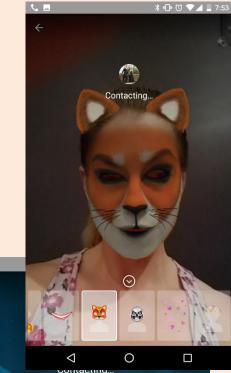


 \triangleleft

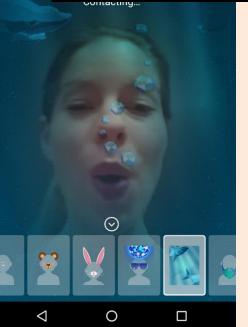
0



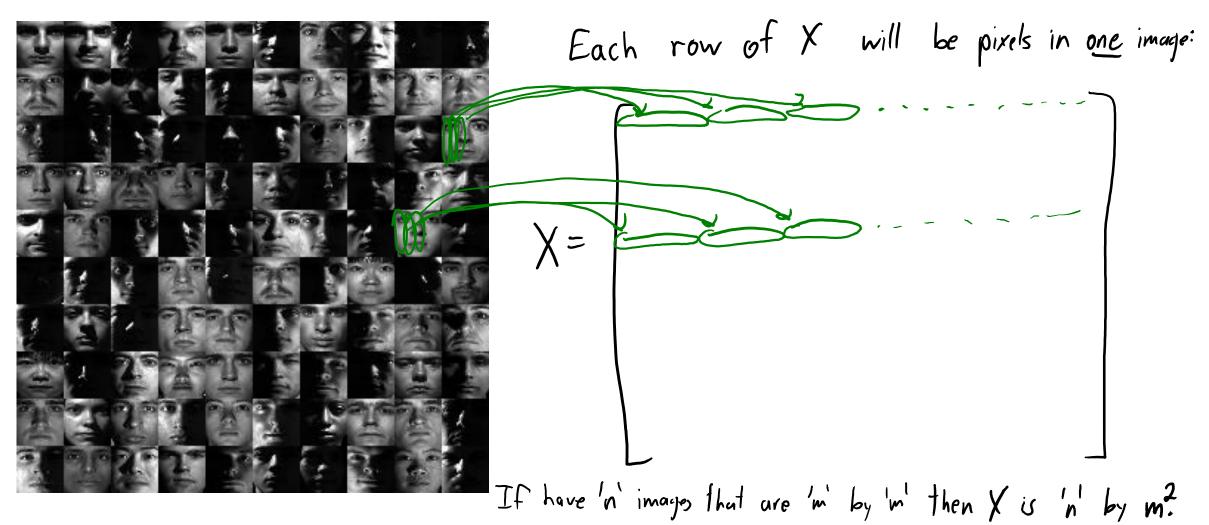




S.

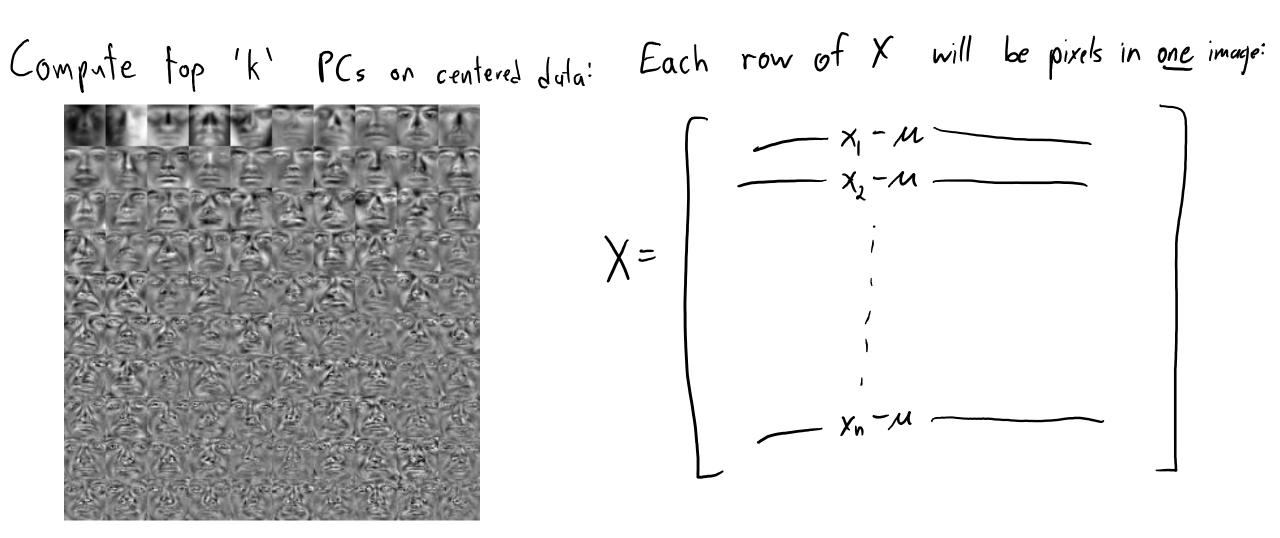


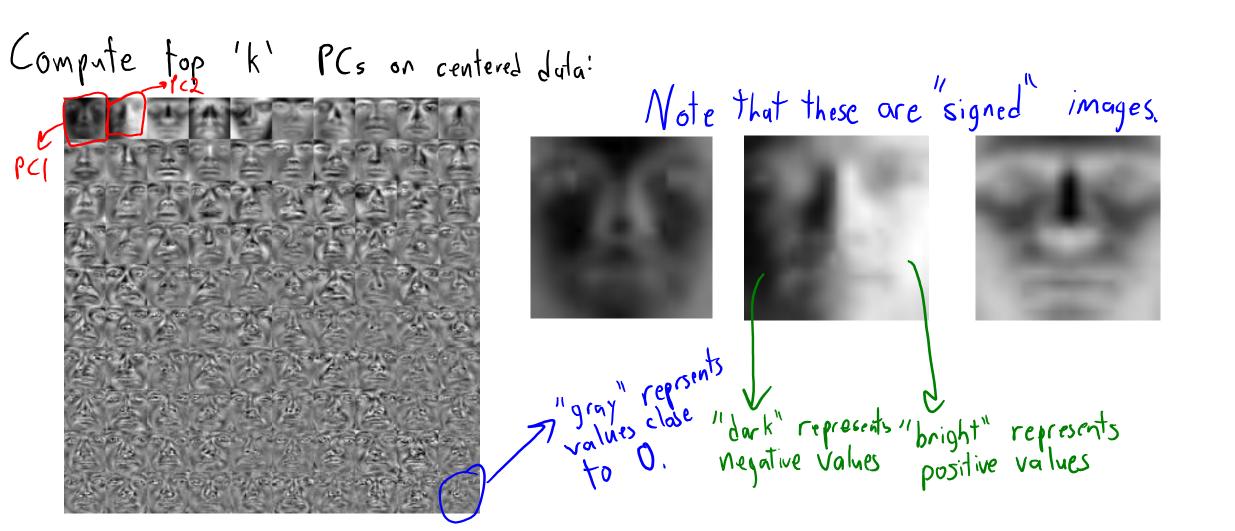
• Collect a bunch of images of faces under different conditions:



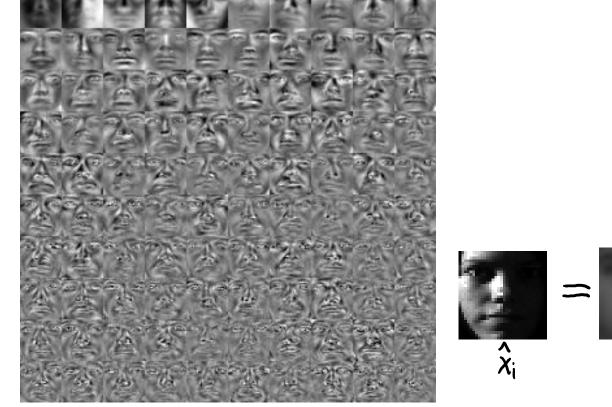
Compute mean
$$M_{j}$$
 of each column. Each row of X will be pixels in one image:

$$X = \begin{bmatrix} x_{1} - M \\ x_{2} - M \\ \vdots \\ \vdots \\ y_{n} - M \\ \end{bmatrix}$$
Replace each x_{ij} by $x_{ij} - M_{j}$



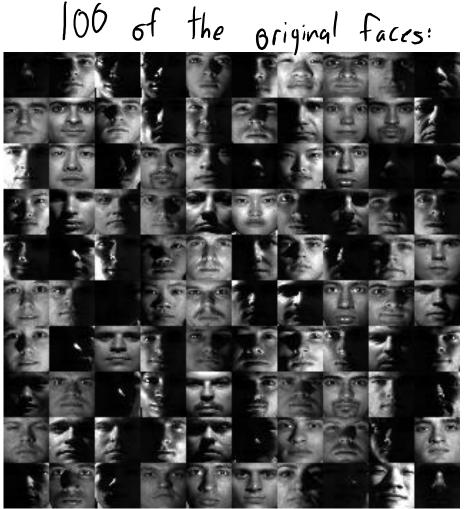


Compute top 'k' PCs on centered duta:

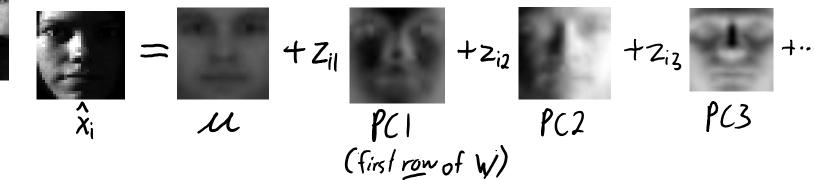


"Eigenface" representation:

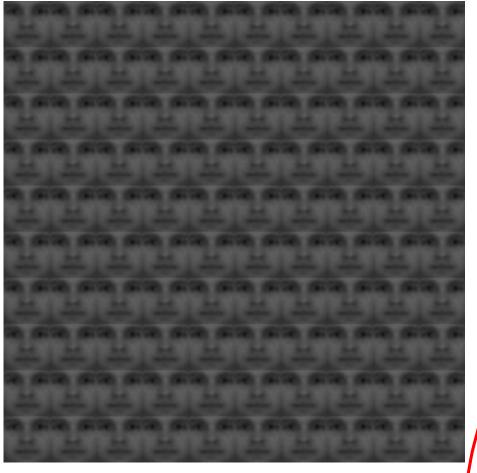
+.. +2i2 +Z_{il} +Ziz PC3 PCI (first row of W) PC2 M



"Eigenface" representation:

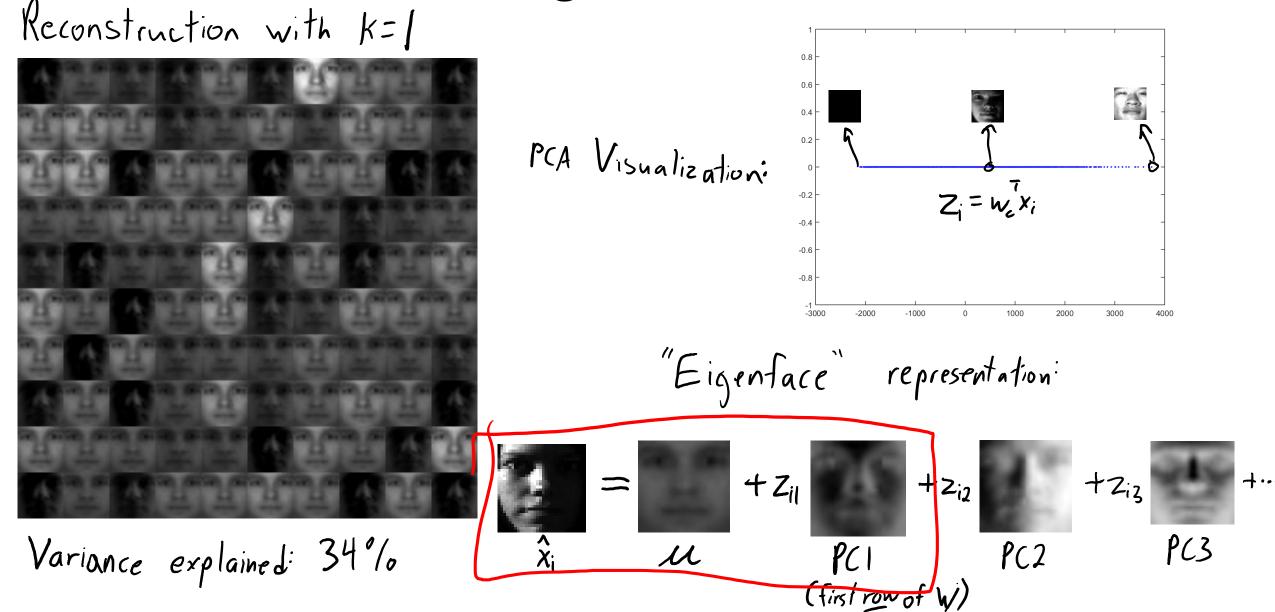


Reconstruction with K=0



Variance explained: 0%

"Eigenface" representation + Z_{il} / + Zi2 + Ziz | + •• 1 PC3 Λ PC2 \mathcal{M} PCI (first row of W) Xi



Eigenfaces Reconstruction with K=2 3000 2000 1000 PCA Visualization -1000 -2000 -3000 ()--> -4000 3000 4000 "Eigenface" representation: $+Z_{il}$ + z_{i2} / \leq +Ziz PC3 ∧ Xi PC2 Variance explained: 71% PCI \mathcal{M} (first row of W,

4..

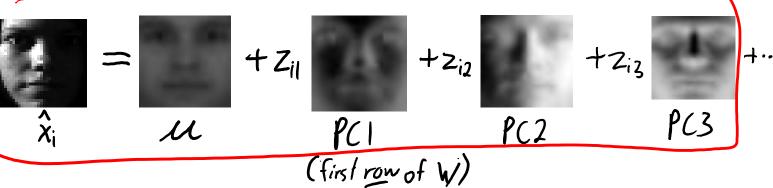
PCA Visualization

Reconstruction with K=3

Variance explained: 76%

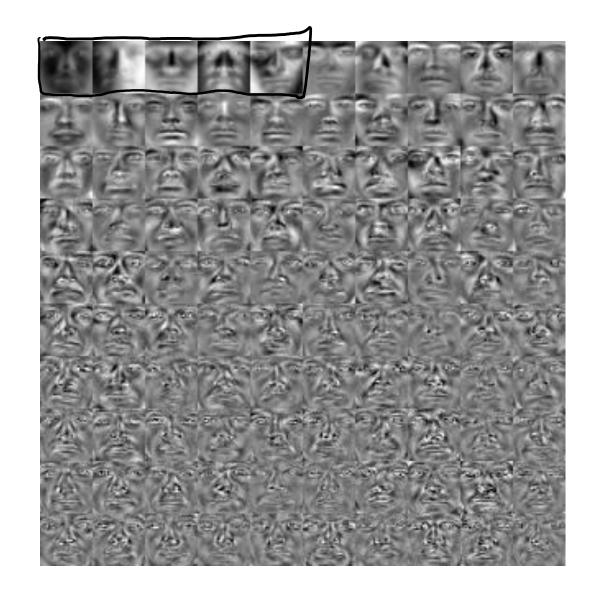
1000 500 0 -500 -1000 -1500 -4000 2000 4000 3000 2000 1000 0 -2000 -1000 -2000 -3000 -4000

"Eigenface" representation:



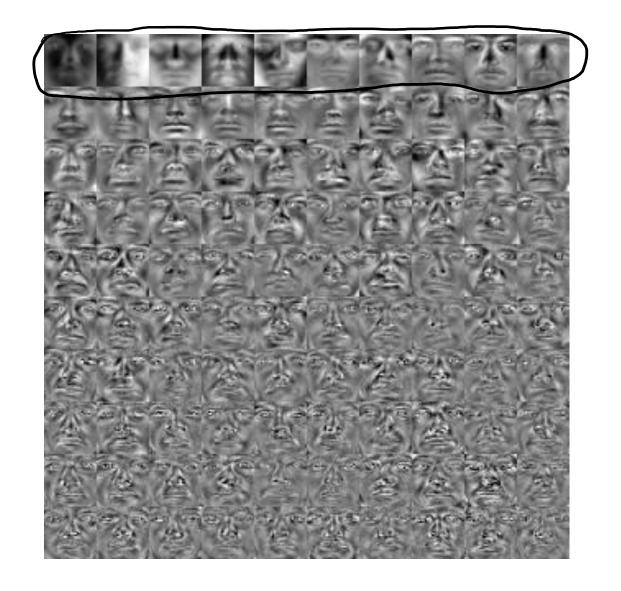
Reconstruction with K=5

Variance explained: 86°/0



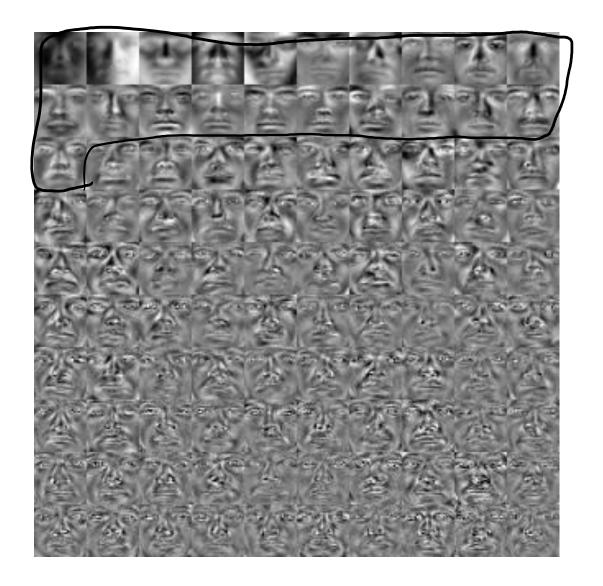
Reconstruction with K=10

Variance explained: 85%



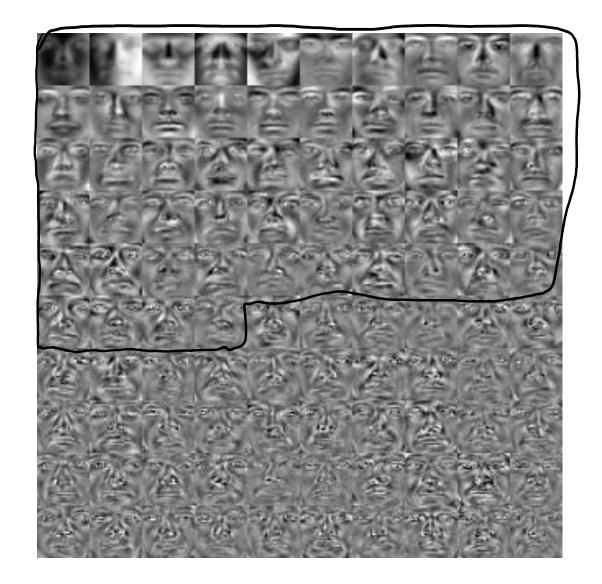
Reconstruction with K=21

Variance explained: 90°/0

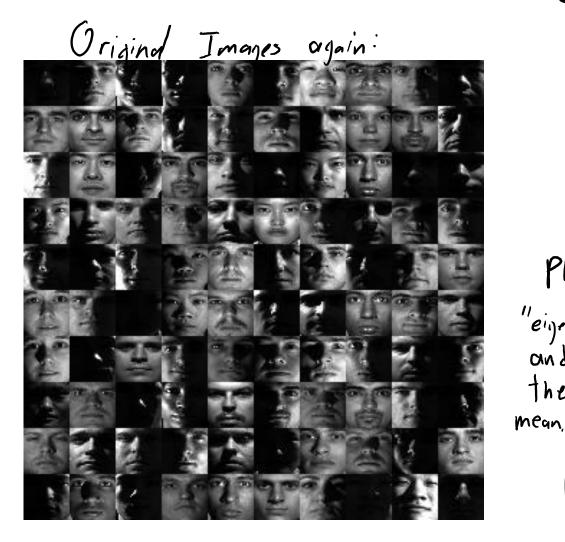


Reconstruction with K=54

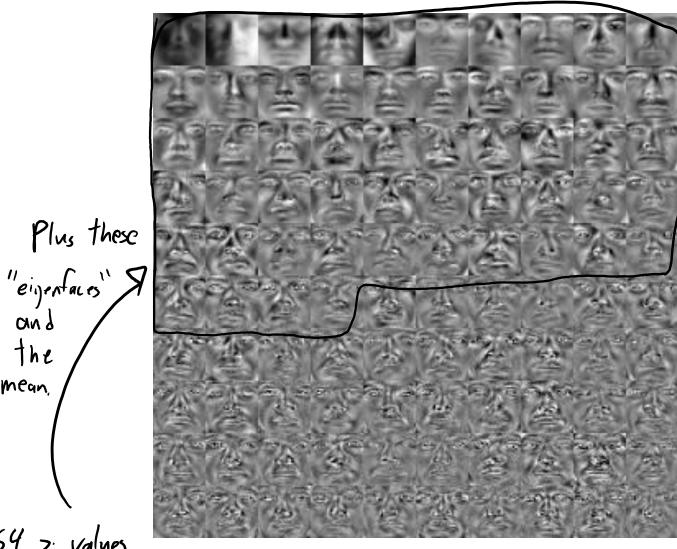
Variance explained: 95%



the

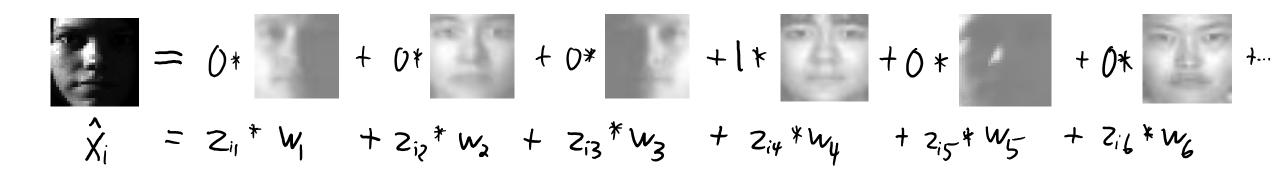


We can replace 1024 xi values by 54 z; values



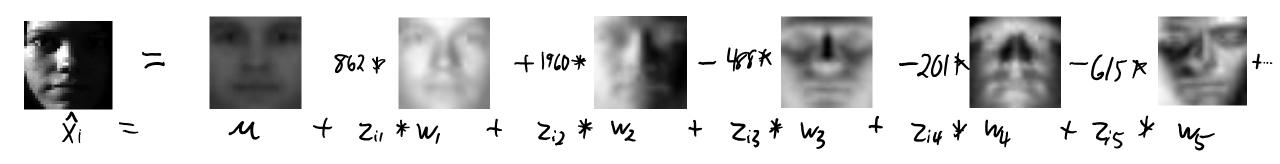
VQ vs. PCA vs. NMF

- But how *should* we represent faces?
 - Vector quantization (k-means).
 - Replace face by the average face in a cluster.
 - 'Grandmother cell': one neuron = one face.
 - Can't distinguish between people in the same cluster (only 'k' possible faces).
 - Almost certainly not true: too few neurons.



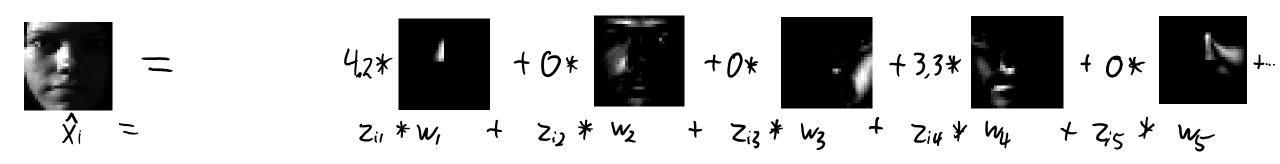
VQ vs. PCA vs. NMF

- But how *should* we represent faces?
 - Vector quantization (k-means).
 - PCA (orthogonal basis).
 - Global average plus linear combination of "eigenfaces".
 - "Distributed representation".
 - Coded by pattern of group of neurons: can represent infinite number of faces by changing z_i.
 - But "eigenfaces" are not intuitive ingredients for faces.
 - PCA tends to use positive/negative cancelling bases.



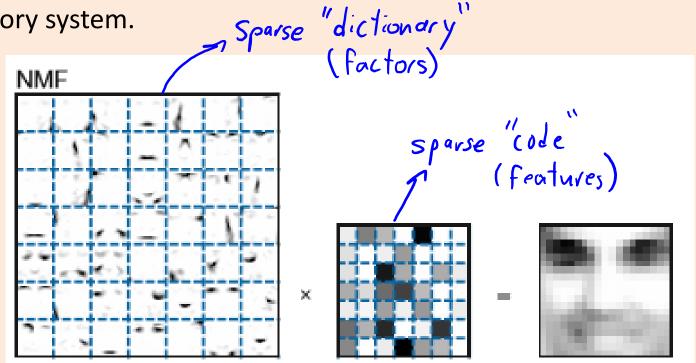
VQ vs. PCA vs. NMF

- But how *should* we represent faces?
 - Vector quantization (k-means).
 - PCA (orthogonal basis).
 - NMF (non-negative matrix factorization):
 - Instead of orthogonality/ordering in W, require W and Z to be non-negativity.
 - Example of "sparse coding":
 - The z_i are sparse so each face is coded by a small number of neurons.
 - The $w_{\rm c}$ are sparse so neurons tend to be "parts" of the object.



Representing Faces

- Why sparse coding?
 - "Parts" are intuitive, and brains seem to use sparse representation.
 - Energy efficiency if using sparse code.
 - Increase number of concepts you can memorize?
 - Some evidence in fruit fly olfactory system.



Warm-up to NMF: Non-Negative Least Squares

• Consider our usual least squares problem:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

But assume y_i and elements of x_i are non-negative:

- Could be sizes ('height', 'milk', 'km') or counts ('vicodin', 'likes', 'retweets').

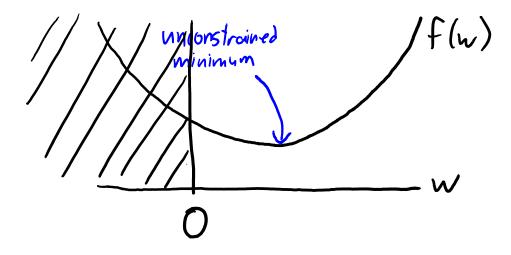
- Assume we want elements of 'w' to be non-negative, too:
 - No physical interpretation to negative weights.
 - If x_{ii} is amount of product you produce, what does $w_i < 0$ mean?
- Non-negativity leads to sparsity...

Sparsity and Non-Negative Least Squares

• Consider 1D non-negative least squares objective:

$$f(x) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2$$
 with w>0

• Plotting the (constrained) objective function:



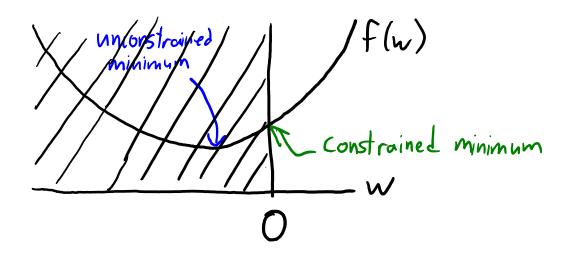
• In this case, non-negative solution is least squares solution.

Sparsity and Non-Negative Least Squares

• Consider 1D non-negative least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2$$
 with w>0

• Plotting the (constrained) objective function:



• In this case, non-negative solution is w = 0.

Sparsity and Non-Negativity

- Similar to L1-regularization, non-negativity leads to sparsity.
 Also regularizes: w_i are smaller since can't "cancel" out negative values.
- How can we minimize f(w) with non-negative constraints?
 - Naive approach: solve least squares problem, set negative w_j to 0. Compute $w = (\chi^T \chi) \setminus (\chi^T y)$ Set $w_j = \max\{0, w_j\}$
 - This is correct when d = 1.
 - Can be worse than setting w = 0 when $d \ge 2$.

Sparsity and Non-Negativity

- Similar to L1-regularization, non-negativity leads to sparsity.
 Also regularizes: w_i are smaller since can't "cancel" out negative values.
- How can we minimize f(w) with non-negative constraints?
 - A correct approach is projected gradient algorithm:
 - Run a gradient descent iteration:

$$w^{t+\frac{1}{2}} = w^{t} - \alpha^{t} \nabla f(w^{t})$$

• After each step, set negative values to 0.

$$W_{j}^{t+1} = \max\{0, W_{j}^{t+1}\}$$

• Repeat.

Sparsity and Non-Negativity

- Similar to L1-regularization, non-negativity leads to sparsity.
 Also regularizes: w_i are smaller since can't "cancel" out negative values.
- How can we minimize f(w) with non-negative constraints?
 - A correct approach is projected gradient algorithm:

$$W^{t+1/2} = W^{t} - \alpha^{t} \nabla f(w^{t})$$
 $W^{t+1/2}_{j} = \max \{0, W^{t+1/2}_{j}\}$

- Similar properties to gradient descent:
 - Guaranteed decrease of 'f' if α_t is small enough.
 - Reaches local minimum under weak assumptions (global minimum for convex 'f').
 - Least squares objective is still convex when restricted to non-negative variables.
 - Generalizations allow things like L1-regularization instead of non-negativity.

(findMinL1.m)

Projected-Gradient for NMF

• Back to the non-negative matrix factorization (NMF) objective:

$$f(W_{3}Z) = \sum_{j=1}^{n} \sum_{j=1}^{d} ((w_{j})^{T} z_{j} - \chi_{ij})^{2} \quad with \quad W_{cj} \neq 0$$
and $z_{ij} \neq 0$

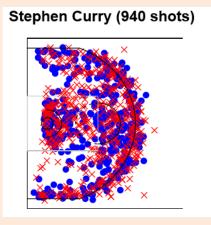
- Different ways to use projected gradient:
 - Alternate between projected gradient steps on 'W' and on 'Z'.
 - Or run projected gradient on both at once.
 - Or sample a random 'i' and 'j' and do stochastic projected gradient.

Set
$$Z_i^{t+1} = Z_i^{t} - \alpha^t \nabla_{Z_i} f(W,Z)$$
 and $(w)^{t+1} = (w)^t - \alpha^t \nabla_{w} f(W,Z)$ for selected i and j

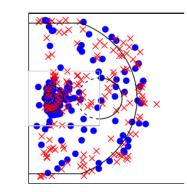
- Non-convex and (unlike PCA) is sensitive to initialization.
 - Hard to find the global optimum.
 - Typically use random initialization.

Application: Sports Analytics

• NBA shot charts:



LeBron James (315 shots)

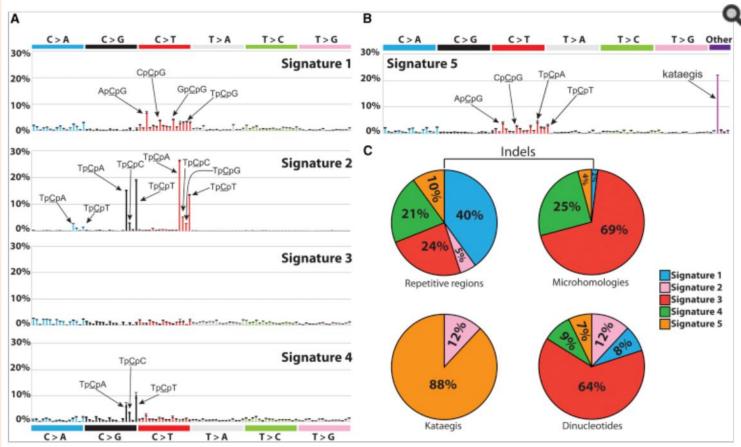


- NMF (using "KL divergence" loss with k=10 and smoothed data).
 - Negative values would not make sense here.

			S	20		,	20		20	20
LeBron James	0.21	0.16	0.12	0.09	0.04	0.07	0.00	0.07	0.08	0.17
Brook Lopez	0.06	0.27	0.43	0.09	0.01	0.03	0.08	0.03	0.00	0.01
Tyson Chandler	0.26	0.65	0.03	0.00	0.01	0.02	0.01	0.01	0.02	0.01
Marc Gasol	0.19	0.02	0.17	0.01	0.33	0.25	0.00	0.01	0.00	0.03
Tony Parker	0.12	0.22	0.17	0.07	0.21	0.07	0.08	0.06	0.00	0.00
Kyrie Irving	0.13	0.10	0.09	0.13	0.16	0.02	0.13	0.00	0.10	0.14
Stephen Curry	0.08	0.03	0.07	0.01	0.10	0.08	0.22	0.05	0.10	0.24
James Harden	0.34	0.00	0.11	0.00	0.03	0.02	0.13	0.00	0.11	0.26
Steve Novak	0.00	0.01	0.00	0.02	0.00	0.00	0.01	0.27	0.35	0.34

Application: Cancer "Signatures"

- What are common sets of mutations in different cancers?
 - May lead to new treatment options.



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588146/

Regularized Matrix Factorization

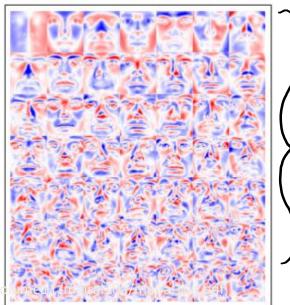
- For many PCA applications, ordering orthogonal PCs makes sense.
 - Latent factors are independent of each other.
 - We definitely want this for visualization.
- In other cases, ordering orthogonal PCs doesn't make sense.

Usual

Orthogonal

eign faces

- We might not expect a natural "ordering".



PCA with non-orthogonal basis

Regularized Matrix Factorization

• More recently people have considered L2-regularized PCA:

$$f(W, Z) = \frac{1}{2} ||ZW - X||_{F}^{2} + \frac{3}{2} ||W||_{F}^{2} + \frac{3}{2} ||Z||_{F}^{2}$$

- Replaces normalization/orthogonality/sequential-fitting.
 But requires regularization parameters λ₁ and λ₂.
- Need to regularize W and Z because of scaling problem:
 - If you only regularize 'W' it doesn't do anything:
 - I could take unregularized solution, replace W by αW for a tiny α to shrink ||W||_F as much as I want, then multiply Z by (1/α) to get same solution.
 - Similarly, if you only regularize 'Z' it doesn't do anything.

Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

$$f(W_{2}) = \frac{1}{2} ||ZW - X||_{F}^{2} + \frac{\lambda_{i}}{2} \sum_{i=1}^{2} ||Z_{i}||_{i} + \frac{\lambda_{i}}{2} \sum_{j=1}^{d} ||w_{j}||_{i}$$

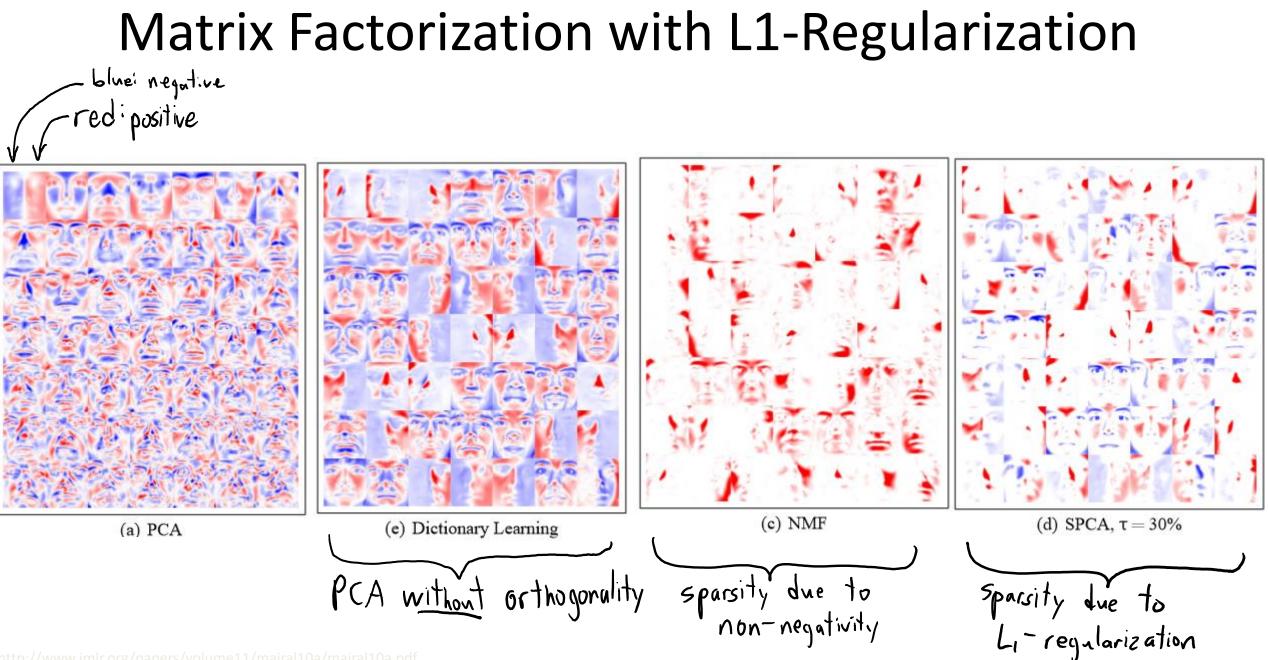
- Called sparse coding (L1 on 'Z') or sparse dictionary learning (L1 on 'W').
- Disadvantage of using L1-regularization over non-negativity:
 Sparsity controlled by λ₁ and λ₂ so you need to set these.
- Advantage of using L1-regularization:
 - Negative coefficients usually make sense.
 - Sparsity controlled by λ_1 and λ_2 , so you can control amount of sparsity.

Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

$$f(W_{2}) = \frac{1}{2} ||ZW - X||_{F}^{2} + \frac{\lambda_{1}}{2} \sum_{i=1}^{2} ||Z_{i}||_{i} + \frac{\lambda_{2}}{2} \sum_{j=1}^{d} ||w_{j}||_{i}$$

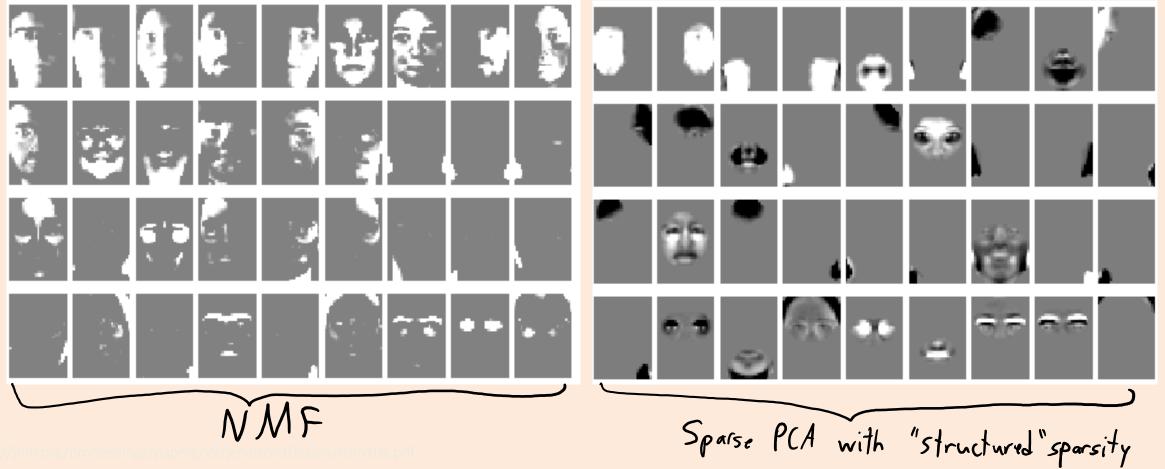
- Called sparse coding (L1 on 'Z') or sparse dictionary learning (L1 on 'W').
- Many variations exist:
 - Mixing L2-regularization and L1-regularization.
 - Or normalizing 'W' (in L2-norm or L1-norm) and regularizing 'Z'.
 - K-SVD constrains each z_i to have at most 'k' non-zeroes:
 - K-means is special case where k = 1.
 - PCA is special case where k = d.



http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pd

Recent Work: Structured Sparsity

- "Structured sparsity" considers dependencies in sparsity patterns.
 - Can enforce that "parts" are convex regions.

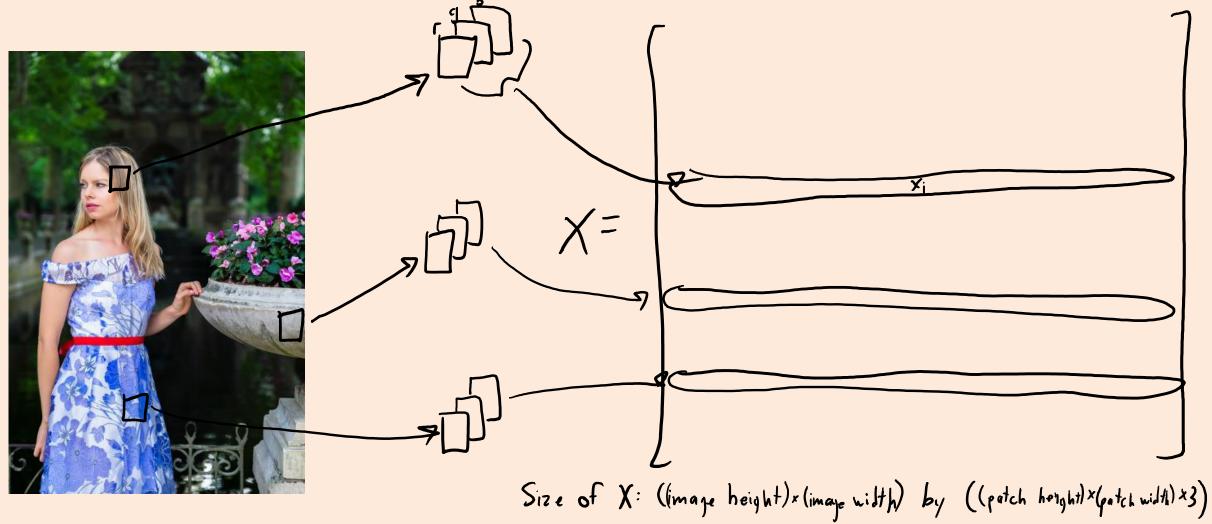


Summary

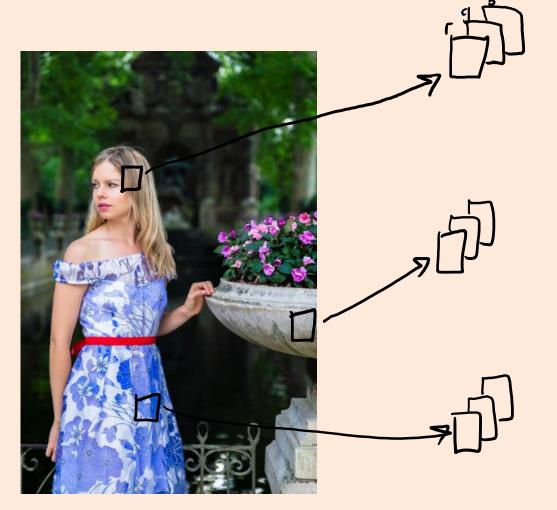
- Biological motivation for orthogonal and/or sparse latent factors.
- Non-negative matrix factorization leads to sparse LFM.
- Non-negativity constraints lead to sparse solution.
 - Projected gradient adds constraints to gradient descent.
 - Non-orthogonal LFMs make sense in many applications.
- L1-regularization leads to other sparse LFMs.

• Next time: the NetFlix challenge.

• Consider building latent-factors for general image patches:



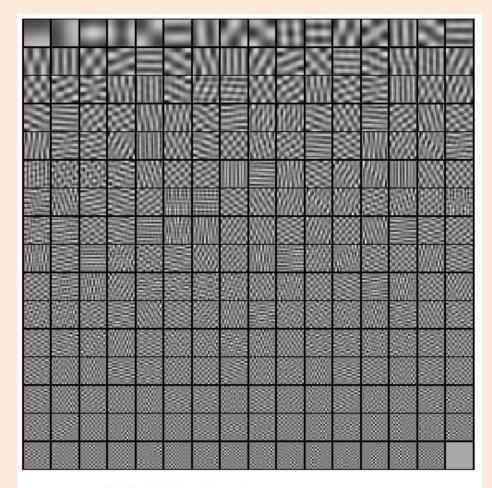
• Consider building latent-factors for general image patches:



Typical pre-processing:

Usual variable centering
 "Whiten" patches.
 (remove correlations)

Application: Image Restoration

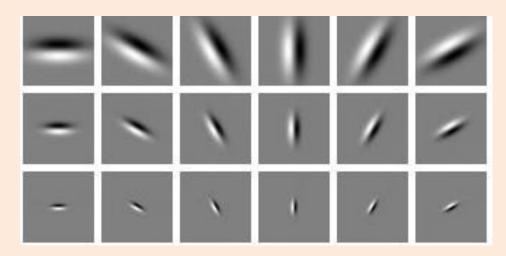


(b) Principal components.

Orthogonal bases don't seem right:

- Few PCs do almost everything.
- Most PCs do almost nothing.

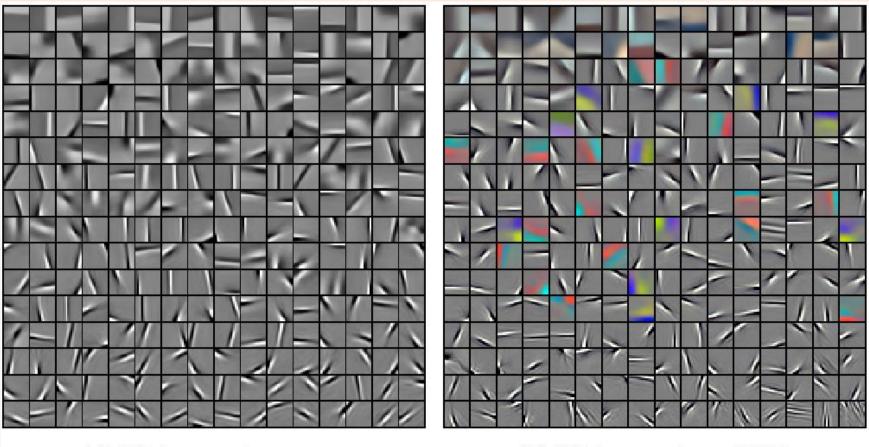
We believe "simple cells" in visual cortex use:



'Gabor' filters

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters

• Results from a sparse (non-orthogonal) latent factor model:

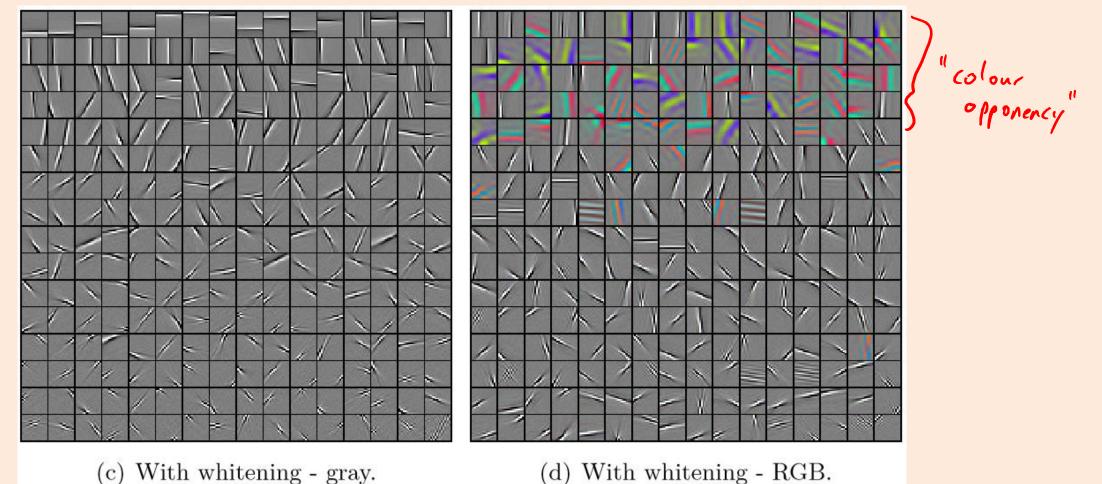


(a) With centering - gray.

(b) With centering - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

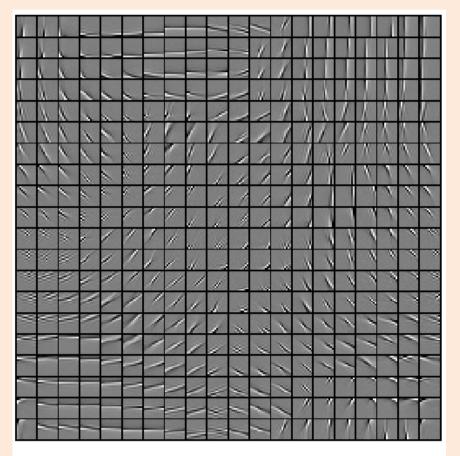
• Results from a "sparse" (non-orthogonal) latent-factor model:



http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Recent Work: Structured Sparsity

• Basis learned with a variant of "structured sparsity":



Similar to "cortical columns" theory in visual cortex.

(b) With 4×4 neighborhood.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf