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Admin

• Assignment 4:

– Due Friday of next week.

• No class Monday due to holiday.

– There will be tutorials next week on MAP/PCA (except Monday).



1. Decision trees

2. Naïve Bayes classification

3. Ordinary least squares regression

4. Logistic regression

5. Support vector machines

6. Ensemble methods

7. Clustering algorithms

8. Principal component analysis

9. Singular value decomposition

10.Independent component analysis (bonus)

http://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html



Last Time: Latent-Factor Models

• Latent-factor models take input data ‘X’ and output a basis ‘Z’:

– Usually, ‘Z’ has fewer features than ‘X’.

• Uses: dimensionality reduction, visualization, factor discovery.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html
https://new.edu/resources/big-5-personality-traits



Last Time: Principal Component Analysis

• Principal component analysis (PCA) is a linear latent-factor model:

– These models “factorize” matrix X into matrices Z and W:

– We can think of rows wc of W as ‘k’ fixed “part” (used in all examples).

– zi is the “part weights” for example xi: “how much of each part wc to use”.



Last Time: PCA Geometry

• When k=1, the W matrix defines a line: 

– We choose ‘W’ as the line minimizing squared distance to the data.

– Given ‘W’, the zi are the coordinates of the xi “projected” onto the line.



• When k=2, the W matrix defines a plane: 

– We choose ‘W’ as the plane minimizing squared distance to the data.

– Given ‘W’, the zi are the coordinates of the xi “projected” onto the plane.

Last Time: PCA Geometry

http://www.nlpca.org/fig_pca_principal_component_analysis.png



Last Time: PCA Geometry

• When k=2, the W matrix defines a plane: 

– Even if the original data is high-dimensional, 
we can visualize data “projected” onto this plane.

http://www.prismtc.co.uk/superheroes-pca/



Digression: Data Centering (Important)

• In PCA, we assume that the data X is “centered”.

– Each column of X has a mean of zero.

• It’s easy to center the data:

• There are PCA variations that estimate “bias in each coordinate”.

– In basic model this is equivalent to centering the data.



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• In k-means we tried to optimize this with alternating minimization:

– Fix “cluster assignments” Z and find the optimal “means” W.

– Fix “means” W and find the optimal “cluster assignments” Z.

• Converges to a local optimum.

– But may not find a global optimum (sensitive to initialization).



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• In PCA we can also use alternating minimization:

– Fix “part weights” Z and find the optimal “parts” W.

– Fix “parts” W and find the optimal “part weights” Z.

• Converges to a local optimum.

– Which will be a global optimum (if we randomly initialize W and Z).



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• Alternating minimization steps:

– If we fix Z, this is a quadratic function of W (least squares column-wise):

– If we fix W, this is a quadratic function of Z (transpose due to dimensions):



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• This objective is not jointly convex in W and Z.

– You will find different W and Z depending on the initialization.

• For example, if you initialize with W1 = 0, then they will stay at zero.

– But it’s possible to show that all “stable” local optima are global optima.

• You will converge to a global optimum in practice if you initialize randomly.
– Randomization means you don’t start on one of the unstable non-global critical points.

• E.g., sample each initial zij from a normal distribution.



PCA Computation: Prediction

• At the end of training, the “model” is the µj and the W matrix.

– PCA is parametric.

• PCA prediction phase:

– Given new data  𝑋, we can use µj and W this to form  𝑍:



PCA Computation: Prediction

• At the end of training, the “model” is the µj and the W matrix.

– PCA is parametric.

• PCA prediction phase:

– Given new data  𝑋, we can use µj and W this to form  𝑍:

– The “reconstruction error” is how close approximation is to  𝑋:

– Our “error” from replacing the xi with the zi and W. 



PCA Computation: Stochastic Gradient

• For big X matrices, you can also use stochastic gradient:

• (Other variables stay the same.)



Choosing ‘k’ by “Variance Explained”

• “Variance” approach to choosing ‘k’:

– Consider the variance of the xij values:

– For a given ‘k’ we compute (variance of errors)/(variance of xij):

– Gives a number between 0 (k=n) and 1 (k=0), giving “variance remaining”.

• If you want to “explain 90% of variance”, choose smallest ‘k’ where ratio is < 0.10.



(pause)



Non-Uniqueness of PCA

• Alternating minimization and stochastic gradient find a global min.

– But the actual W and Z are still sensitive to the initialization.

• This is because many different W and Z minimize f(W,Z).

– The solution is not unique.

• To understand why, we’ll need idea of “span” from linear algebra.

– This also helps explain the geometry of PCA.

– We’ll also see that some global optima may be better than others.



Span of 1 Vector

• Consider a single vector w1 (k=1).



Span of 1 Vector

• Consider a single vector w1 (k=1).

• The span(w1) is all vectors of the form ziw1 for a scalar zi.



Span of 1 Vector

• Consider a single vector w1 (k=1).

• The span(w1) is all vectors of the form ziw1 for a scalar zi.

• If w1 ≠ 0, this forms a line.



• But note that the “span” of many different vectors gives same line.

– Mathematically: αw1 defines the same line as w1 for any scalar α ≠ 0.

– PCA solution can only be defined up to scalar multiplication.

• If (W,Z) is a solution, then (αW,(1/α)Z) is also a solution.

Span of 1 Vector



Span of 2 Vectors

• Consider two vector w1 and w2 (k=2).



Span of 2 Vectors

• Consider two vector w1 and w2 (k=2).

– The span(w1,w2) is all vectors of form zi1w1 + zi2w2 for a scalars zi1 and zi2.
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• Consider two vector w1 and w2 (k=2).
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Span of 2 Vectors

• Consider two vector w1 and w2 (k=2).

– The span(w1,w2) is all vectors of form zi1w1 + zi2w2 for a scalars zi1 and zi2.

– For most non-zero 2d vectors, span(w1,w2) is a plane.

• In the case of two vectors in R2, the plane will be *all* of R2.



• Consider two vector w1 and w2 (k=2).

– The span(w1,w2) is all vectors of form zi1w1 + zi2w2 for a scalars zi1 and zi2.

– For most non-zero 2d vectors, span(w1,w2) is plane.

• Exception is if w2 is in span of w1 (“collinear”), then span(w1,w2) is just a line.

Span of 2 Vectors



Span of 2 Vectors

• Consider two vector w1 and w2 (k=2).

– The span(w1,w2) is all vectors of form zi1w1 + zi2w2 for a scalars zi1 and zi2.

– New issues for PCA (k >= 2):

• We have label switching: span(w1,w2) = span(w2,w1).

• We can rotate factors within the plane (if not rotated to be  collinear).



Span of 2 Vectors

• 2 tricks to make vectors defining a plane “more unique”:

– Normalization: enforce that ||w1|| = 1 and ||w2|| = 1.



Span of 2 Vectors

• 2 tricks to make vectors defining a plane “more unique”:

– Normalization: enforce that ||w1|| = 1 and ||w2|| = 1.



Span of 2 Vectors

• 2 tricks to make vectors defining a plane “more unique”:

– Normalization: enforce that ||w1|| = 1 and ||w2|| = 1.

– Orthogonality: enforce that w1
Tw2 = 0 (“perpendicular”).

– Now I can’t grow/shrink vectors (though I can still reflect).

– Now I can’t rotate one vector (but I can still rotate *both*).



Digression: PCA only makes sense for k ≤ d

• Remember our clustering dataset with 4 clusters:

• It doesn’t make sense to use PCA with k=4 on this dataset.

– We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.



Span in Higher Dimensions

• In higher-dimensional spaces:

– Span of 1 non-zero vector w1 is a line.

– Span of 2 non-zero vectors w1 and w2 is a plane (if not collinear).

• Can be visualized as a 2D plot.

– Span of 3 non-zeros vectors {w1, w2, w3} is a 3d space (if not “coplanar”).

– …

• This is how the W matrix in PCA defines lines, planes, spaces, etc.

– Each time we increase ‘k’, we add an extra “dimension” to the subspace.



Making PCA Unique

• We’ve identified several reasons that optimal W is non-unique:

– I can multiply any wc by any non-zero α.

– I can rotate any wc almost arbitrarily within the span.

– I can switch any wc with any other wc’.

• PCA implementations add constraints to make solution unique:

– Normalization: we enforce that ||wc|| = 1.

– Orthogonality: we enforce that wc
Twc’ = 0 for all c ≠ c’.

– Sequential fitting: We first fit w1 (“first principal component”) giving a line.

• Then fit w2 given w1 (“second principal component”) giving a plane.

• Then we fit w3 given w1 and w2 (“third principal component”) giving a space.



Basis, Orthogonality, Sequential Fitting



Basis, Orthogonality, Sequential Fitting



Basis, Orthogonality, Sequential Fitting



Basis, Orthogonality, Sequential Fitting

http://setosa.io/ev/principal-component-analysis

http://setosa.io/ev/principal-component-analysis


PCA with SVD

• How do we fit with normalization/orthogonality/sequential-fitting?

– It can be done with the “singular value decomposition” (SVD).

– Take CPSC 302.

• 4 lines of Julia code: Computing Zhat is cheaper now:

– mu = mean(X,1)

– X -= repmat(mu,n,1)

– (U,S,V) = svd(X)

– W = V[:,1:k]’



“Synthesis” View vs. “Analysis” View

• We said that PCA finds hyper-plane minimizing distance to data xi.
– This is the “synthesis” view of PCA (connects to k-means and least squares).

• “Analysis” view when we have orthogonality constraints: 
– PCA finds hyper-plane maximizing variance in zi space.

– You pick W to “explain as much variance in the data” as possible.



Summary

• Alternating minimization and stochastic gradient:

– Algorithms for minimizing PCA objective.

• Choosing ‘k’:

– We can choose ‘k’ to explain “percentage of variance” in the data.

• PCA non-uniqueness:

– Due to scaling, rotation, and label switching.

• Orthogonal basis and sequential fitting of PCs:

– Leads to non-redundant PCs with unique directions.

• Next time: cancer signatures and NBA shot charts.



Making PCA Unique

• PCA implementations add constraints to make solution unique:

– Normalization: we enforce that ||wc|| = 1.

– Orthogonality: we enforce that wc
Twc’ = 0 for all c ≠ c’.

– Sequential fitting: We first fit w1 (“first principal component”) giving a line.

• Then fit w2 given w1 (“second principal component”) giving a plane.

• Then we fit w3 given w1 and w2 (“third principal component”) giving a space.

• …

• Even with all this, the solution is only unique up to sign changes:

– I can still replace any wc by –wc:

• -wc is normalized, is orthogonal to the other wc’, and spans the same space.

– Possible fix: require that first non-zero element of each wc is positive.



Proof: “Synthesis” View = “Analysis” View (WWT = I)

• The variance of the zij (maximized in “analysis” view):

• The distance to the hyper-plane (minimized in “synthesis” view):



Probabilistic PCA

• With zero-mean (“centered”) data, in PCA we assume that

• In probabilistic PCA we assume that

• Integrating over ‘Z’ the marginal likelihood given ‘W’ is Gaussian,

• Regular PCA is obtained as the limit of σ2 going to 0.



Generalizations of Probabilistic PCA

• Probabilistic PCA model:

• Why do we need a probabilistic interpretation?

• Shows that PCA fits a Gaussian with restricted covariance.

– Hope is that WTW + σ2I is a good approximation of XTX.

• Gives precise connection between PCA and factor analysis.



Factor Analysis

• Factor analysis is a method for discovering latent factors.

• Historical applications are measures of intelligence and personality.

• A standard tool and widely-used across science and engineering.

https://new.edu/resources/big-5-personality-traits



PCA vs. Factor Analysis

• PCA and FA both write the matrix ‘X’ as

• PCA and FA are both based on a Gaussian assumption.

• Are PCA and FA the same?

– Both are more than 100 years old.

– People are still arguing about whether they are the same:

• Doesn’t help that some packages run PCA when you call their FA method.





PCA vs. Factor Analysis

• In probabilistic PCA we assume:

• In FA we assume for a diagonal matrix D that:

• The posterior in this case is:

• The difference is you have a noise variance for each dimension.
– FA has extra degrees of freedom.



PCA vs. Factor Analysis

• In practice there often isn’t a huge difference:

http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi



Factor Analysis Discussion

• Differences with PCA:

– Unlike PCA, FA is not affected by scaling individual features.

– But unlike PCA, it’s affected by rotation of the data.

– No nice “SVD” approach for FA, you can get different local optima.

• Similar to PCA,  FA is invariant to rotation of ‘W’.

– So as with PCA you can’t interpret multiple factors as being unique.



Motivation for ICA

• Factor analysis has found an enormous number of applications.

– People really want to find the “hidden factors” that make up their data.

• But PCA and FA can’t identify the factors.



Motivation for ICA

• Factor analysis has found an enormous number of applications.
– People really want to find the “hidden factors” that make up their data.

• But PCA and FA can’t identify the factors.
– We can rotate W and obtain the same model.

• Independent component analysis (ICA) is a more recent approach.
– Around 30 years old instead of > 100.

– Under certain assumptions it can identify factors.

• The canonical application of ICA is blind source separation.



Blind Source Separation

• Input to blind source separation:
– Multiple microphones recording multiple sources.

• Each microphone gets different mixture of the sources.
– Goal is reconstruct sources (factors) from the measurements.

http://music.eecs.northwestern.edu/research.php



Independent Component Analysis Applications

• ICA is replacing PCA and FA in many applications:

• Recent work shows that ICA can often resolve direction of causality.

https://en.wikipedia.org/wiki/Independent_component_analysis#Applications



Limitations of Matrix Factorization

• ICA is a matrix factorization method like PCA/FA,

• Let’s assume that X = ZW for a “true” W with k = d.

– Different from PCA where we assume k ≤ d.

• There are only 3 issues stopping us from finding “true” W.



3 Sources of Matrix Factorization Non-Uniquness

• Label switching: get same model if we permute rows of W.
– We can exchange row 1 and 2 of W (and same columns of Z).
– Not a problem because we don’t care about order of factors.

• Scaling: get same model if you scale a row.
– If we mutiply row 1 of W by α, could multiply column 1 of Z by 1/α.
– Can’t identify sign/scale, but might hope to identify direction.

• Rotation: get same model if we rotate W.
– Rotations correspond to orthogonal matrices Q, such matrices have QTQ = I.
– If we rotate W with Q, then we have (QW)TQW = WTQTQW = WTW.

• If we could address rotation, we could identify the “true” directions.



A Unique Gaussian Property

• Consider an independent prior on each latent features zc.

– E.g., in PPCA and FA we use N(0,1) for each zc.

• If prior p(z) is independent and rotation-invariant (p(Qz) = p(z)),
then it must be Gaussian (only Gaussians have this property).

• The (non-intuitive) magic behind ICA:

– If the priors are all non-Gaussian, it isn’t rotationally symmetric.

– In this case, we can identify factors W (up to permutations and scalings).



PCA vs. ICA

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf



Independent Component Analysis

• In ICA we approximate X with ZW, 
assuming p(zic) are non-Gaussian.

• Usually we “center” and “whiten” the data before applying ICA.

• There are several penalties that encourage non-Gaussianity:

– Penalize low kurtosis, since kurtosis is minimized by Gaussians.

– Penalize high entropy, since entropy is maximized by Gaussians.

• The fastICA is a popular method maximizing kurtosis.



ICA on Retail Purchase Data

• Cash flow from 5 stores over 3 years:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf



ICA on Retail Purchase Data

• Factors found using ICA:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf


