CPSC 340:
Machine Learning and Data Mining



Admin

* Assignment 3:
— 1 late day to hand in tonight, 2 late days for Wednesday.

* Assignment 4:
— Due Friday of next week.



Last Time: Multi-Class Linear Classifiers

* We discussed multi-class linear classification: y, in {1,2,...,k}.
* One vs. all with +1/-1 binary classifier:

— Train weights w_ to predict +1 for class ‘¢, -1 otherwise.

— Predict by taking ‘c” maximizing w_"x.
* Multi-class SVMs and multi-class logistic regression:
— Train the w_ Jomtly to encourage maximum w_'x. to be WTX /\9 Frolmw
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Shape of Decision Boundaries

* Recall that a binary linear classifier splits space using a hyper-plane:
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* Divides x. space into 2 “half-spaces”.




Shape of Decision Boundaries

* Multi-class linear classifier is intersection of these “half-spaces”:
— This divides the space into convex regions (like k-means):

— Could be non-convex with kernels or change of basis.



(pause)



Previously: Identifying Important E-mails

Recall problem of identifying ‘important’ e-mails:

| »  Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) lists Intro to Computer Science 10:20 am
Inbox (3) -
» Issam Laradji Inbox  Convergence rates forcu = 9:49 am
(_  Important ) * sameh, Mark, sameh (3) Inbox  Graduation Project Dema = 8:01 am
Sent Mail » Mark .. sara, Sara (11) Label propagation = 757 am
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Global/local features in linear models give personalized prediction.
We can do binary classification by taking sign of linear model:

i = §)9h(w7Xi>
— Convex loss functions (hinge loss, logistic loss) let us find an appropriate ‘w’.
We can train on huge datasets like Gmail with stochastic gradient.

But what if we want a probabilistic classifier?
— Want a model of p(y, = “important” | x).



Generative vs. Discriminative Models

* Previously we saw naive Bayes:
— Uses Bayes rule and model p(x.|y.) to predict p(y; | xi).

P(y,")(,-)o( \o(x,' [y, )F(y,>

— This strategy is called a generative model.

* It “models how the features are generated”.
e Often works well with lots of features but small ‘n’.

e Alternative is discriminative models:
— Directly model p(y, | x;) to predict p(y; | x).

* No need to model x;, so we can use complicated features.
* Tends to work better with large ‘n” or when naive assumptions aren’t satisfied.

— Classic example is logistic regression.



“Parsimonious” Parameterization and Linear Models

* Challenge: ply, | x;) might still be really complicated:
— If x, has ‘d’ binary features, need to estimate p(y; | x;) for 2¢ input values.

* Practical solution: assume p(y; | x;) has “parsimonious” form.
— For example, we convert output of linear model to be a probability.

* Only need to estimate the parameters of a linear model.

* In binary logistic regression, we’ll do the following:
1. The linear prediction w'x; gives us a number in (-eo, oo).

2. We'll map w'x; to a number in (0,1), with a map acting like a probability.



How should we transform w'x; into a probability?

* Letz, =w'x; in a binary logistic regression model:
— If sign(z) = +1, we should have p(y.=+1 | z,) > 7.
* The linear model thinks y, = +1 is more likely.
— If sign(z;) = -1, we should have p(y,=+1 | z,) < %.
* The linear model thinks y, = -1 is more likely, and p(y,=-1 | z) =1 —p(y, = +1 | z,).
— If z, = 0, we should have p(y,=+1 | z)) = %.

* Both classes are equally likely.

* And we might want size of w'x. to affect probabilities:
— As z, becomes really positive, we should have p(y, = +1 | z,) converge to 1.
— As z, becomes really negative, we should have p(y, = +1 | z,) converge to O.



Sigmoid Function

* So we want a transformation of z. = w'x; that looks like this:
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* The most common choice is the sigmoid function:
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* Values of h(z,) match what we want:

W= 0 h(-02027 W0 =085 h9D%0L K(+)2073 hl+e)= |



Sigmoid: Transforming w'x: to a Probability

* We'll define p(y,=+1 | z,) = h(z,), where ‘h’ is the sigmoid function.
So oe(y,- = -] Iz;) = |- {:(7.' =+ IZ»’)

== hz)N__ ... o
= l‘\(—2|> deFinition of ‘K

* We can write both cases as p(y, | z.) = h(y.z),
so we convert z=w'x. into “probability of y.” using:
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* Given this probabilistic perspective, how should we find best ‘w’?




Maximum Likelihood Estimation (MLE)

 Maximum likelihood estimation (MLE) for fitting probabilistic models.
— We have a dataset D.
— We want to pick parameters ‘w’.
— We define the likelihood as a probability mass/density function p(D | w).

— We choose the model W that maximizes the likelihood:
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* Appealing “consistency” properties as n goes to infinity (take STAT 4XX).



Minimizing the Negative Log-Likelihood (NLL)

 To maximize likelihood,

usually we minimize the negative “log-likelihood” (NLL):
* “Log-likelihood” is short for “logarithm of the likelihood”.
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* Why are these equivalent?

— Logarithm is monotonic: if a > B, then log(a) > log(B).
— Changing sign flips max to min.

* See “Max and Argmax” notes on webpage if this seems strange.



Minimizing the Negative Log-Likelihood (NLL)

* We use logarithm because it turns multiplication into addition:
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* More generally: Iof)(ﬁ'qi) = _é ,"9("li>
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MLE for Naive Bayes

A long time ago, | mentioned that we used MLE in naive Bayes.

We estimated that p(y; = “spam”) as count(spam)/count(e-mails).
— You derive this by minimizing the NLL under a “Bernoulli” likelihood.
— Set derivative of NLL to O, and solve for Bernoulli parameter.

MLE of p(x; | y; = “spam”) gives count(spam,x;)/count(spam).

— Also derived under a conditional “Bernoulli” likelihood.

The derivation is tedious, but if you’re interested | put it here.


https://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

MLE for Supervised Learning

 The MLE in generative models (like naive Bayes) maximizes:

ply,X | w)

* But discriminative models directly model p(y | X, w).
— We treat features X as fixed don’t care about their distribution.
— So the MLE maximizes the conditional likelihood:

()(le)w>

of the targets ‘y’ given the features ‘X’ and parameters ‘w’.



MLE Interpretation of Logistic Regression

* For lID regression problems the condltlonal NLL can be written:
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* Logistic regression assumes sigmoid(w'x:) conditional likelihood:
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* Plugging in the sigmoid
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ikelihood, the NLL is the logistic loss:
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MLE Interpretation of Logistic Regression

* We just derived the logistic loss from the perspective of MLE.

— Instead of “smooth approximation of 0-1 loss”, we now have that
logistic regression is doing MLE in a probabilistic model.

— The training and prediction would be the same as before.

* We still minimize the logistic loss in terms of ‘w’.

— But MLE viewpoint gives us “probability that e-mail is important”:
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Least Squares is Gaussian MLE

* |t turns out that most objectives have an MLE interpretation:

— For example, consider minimizing the squared error:
flw)=31IXw=yll?

— This is MILE of a linear model under the assumption of I1ID Gaussian noise:
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e “Gaussian” is another name for the “normal” distribution.

— Remember that least squares solution is called the “normal equations”.



Least Squares is Gaussian MLE (Gory Details)

* Let’s assume thaty, = w'x, + €, with & following standard normal:
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* This leads to a Gaussian likelihood for example ‘i" of the form:
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* Finding MLE is equivalent to minimizing NLL:
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Loss Functions and Maximum Likelihood Estimation

* So least squares is MLE under Gaussian likelihood.
- 7. 2
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* With a Laplace likelihood you would get absolute error.
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* With sigmoid likelihood we got the binary logistic loss.

* You can derive softmax loss from the softmax likelihood (bonus).



(pause)



Maximum Likelihood Estimation and Overfitting

In our abstract setting with data D the MLE is:
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But conceptually MLE is a bit weird:
— “Find the ‘w’ that makes ‘D’ have the highest probability given ‘w’.”

And MLE often leads to overfitting:

— Data could be very likely for some very unlikely ‘w’.
— For example, a complex model that overfits by memorizing the data.

What we really want:
— “Find the ‘w’ that has the highest probability given the data D.”



Maximum a Posteriori (MAP) Estimation

 Maximum a posteriori (MAP) estimate maximizes the reverse probability:
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— This is what we want: the probability of ‘w’ given our data.

* MLE and MAP are connected by Bayes rule:
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* So MAP maximizes the likelihood p(D|w) times the prior p(w):

— Prior is our “belief” that ‘w’ is correct before seeing data.

— Prior can reflect that complex models are likely to overfit.



MAP Estimation and Regularization

* From Bayes rule, the MAP estimate with IID examples D; is:
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* By again taking the negative of the logarithm we get:
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* So we can view the negative log-prior as a regularizer:

— Many regularizers are equivalent to negative log-priors.



L2-Regularization and MAP Estimation

We obtain L2-regularization under an independent Gaussian assumption:
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With this prior, the MAP estimate with IID training examples would be
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MAP Estimation and Regularization

 MAP estimation gives link between probabilities and loss functions.

— Gaussian likelihood and Gaussian prior give L2-regularized least squares.
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— Sigmoid likelihood and Gaussian prior give L2-regularized logistic regression:
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Summarizing the past few slides

 Many of our loss functions and regularizers have probabilistic interpretations.

— Laplace likelihood leads to absolute error.
— Laplace prior leads to L1-regularization.

* The choice of likelihood corresponds to the choice of loss.

— Our assumptions about how the y.-values can come from the x. and ‘w’.

* The choice of prior corresponds to the choice of regularizer.

— Our assumptions about which ‘w’ values are plausible.
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Regularizing Other Models

* We can view priors in other models as regularizers.

e Remember the problem with MLE for naive Bayes:
 The MLE of p(‘lactase’ = 1| ‘spam’) is: count(spam,lactase)/count(spam).
e But this caused problems if count(spam,lactase) = 0.

* Our solution was Laplace smoothing:
— Add “+1” to our estimates: (count(spam,lactase)+1)/(counts(spam)+2).
— This corresponds to a “Beta” prior so Laplace smoothing is a regularizer.



Why do we care about MLE and MAP?

Unified way of thinking about many of our tricks?
— Laplace smoothing and L2-regularization are doing the same thing.

Remember our two ways to reduce complexity of a model:
— Model averaging (ensemble methods).
— Regularization (linear models).

“Fully”-Bayesian methods combine both of these (CPSC 540).
— Average over all models, weighted by posterior (including regularizer).
— Can use extremely-complicated models without overfitting.

Sometimes it’s easier to define a likelihood than a loss function.



Losses for Other Discrete Labels

MLE/MAP gives loss for classification with basic labels:
— Least squares and absolute loss for regression.

/(]

— Logistic regression for binary labels {“spam”, “not spam”}.
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— Softmax regression for multi-class {“spam”, “not spam”, “important”}.

But MLE/MAP lead to losses with other discrete labels:

— Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.
— Counts: 602 ‘likes’.
— Survival rate: 60% of patients were still alive after 3 years.

Define likelihood of labels, and use NLL as the loss function.

We can also use ratios of probabilities to define more losses (bonus):
— Binary SVMs, multi-class SVMs, and “pairwise preferences” (ranking) models.



Summary

Discriminative probabilistic models directly model p(y; | x,).
— Unlike naive Bayes that models p(x; | y;).
— Usually, we use linear models and define “likelihood” of y. given w'x..

Maximum likelihood estimate viewpoint of common models.
— Objective functions are equivalent to maximizing p(y | X, w).

MAP estimation directly models p(w | X, y).

— Gives probabilistic interpretation to regularization.

Discrete losses for weird scenarios are possible using MLE/MAP:
— Ordinal logistic regression, Poisson regression.

Next time:
— What ‘parts’ are your personality made of?



Discussion: Least Squares and Gaussian Assumption

Classic justifications for the Gaussian assumption underlying least squares:

— Your noise might really be Gaussian. (It probably isn't, but maybe it's a good enough
approximation.)

— The central limit theorem (CLT) from probability theory. (If you add up enough IID
random variables, the estimate of their mean converges to a Gaussian distribution.)

| think the CLT justification is wrong as we've never assumed that the x; are IID across ‘J’
values. We only assumed that the examples x. are |ID across ‘i’ values, so the CLT implies
that our estimate of ‘w’ would be a Gaussian distribution under different samplings of
the data, but this says nothing about the distribution of y. given w'x..

On the other hand, there are reasons *not™ to use a Gaussian assumption, like it's
sensitivity to outliers. This was (apparently) what lead Laplace to propose the Laplace
distribution as a more robust model of the noise.

The "student t" distribution from (published anonymously by Gosset while working at
Guiness) is even more robust, but doesn't lead to a convex objective.



“Heavy” Tails vs. “Light” Tails

e We know that L1-norm is more robust than L2-norm.
— What does this mean in terms of probabilities?
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— Gaussian has “light tails”: assumes everything is close to mean/.E
— Laplace has “heavy tails”
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: assumes some data is far from mean.

— Student ‘t’ is even more heavy-tailed/robust, but NLL is non-convex.



Multi-Class Logistic Regression

Last time we talked about multi-class classification:

— We want Wy‘,Txi to be the most positive among ‘k’ real numbers w_'x..

We have ‘k’ real numbers z__w_"x,, want to map z_to probabilities.

Most common way to do this is with softmax function:
P( y:C ) Z,,7,2," ')zk): exf (Zy)
gexf(zc)
=

— Taking exp(z.) makes it non-negative, denominator makes it sum to 1.

— So this gives a probability for each of the ‘k’ possible values of ‘c’.
The NLL under this likelihood is the softmax loss.



Binary vs. Multi-Class Logistic

 How does multi-class logistic generalize the binary logistic model?
* We can re-parameterize softmax in terms of (k-1) values of z_:
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_ This is due to the “sum to 1” property (one of the z_values is redundant).
— So if k=2, we don’t need a z, and only need a single ‘7".
— Further, when k=2 the probabilities can be written as:
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— Renaming 2’ as -1’, we get the binary logistic regression probabilities.



Ordinal Labels

* Ordinal data: categorical data where the order matters:
— Rating hotels as {‘1 star’, ‘2 stars’, ‘3 stars’, ‘4 stars’, ‘5 stars’}.
— Softmax would ignore order.

* Can use ‘ordinal logistic regression’.

LO%B‘HL regnessim Or‘l""al lO(’i)'hc fejru:{io/\

i el s 4 wl <

as | """'92’ > !6':4;" labei j labe! g, i

af

3 //

| T A/ T

N ————————

W ¥ — w X
O TfeaT '“nftd\ol«ls of si,mo}J as rarmlne ters



Count Labels

Count data: predict the number of times something happens.

— For example, y. = “602" Facebook likes.

Softmax requires finite number of possible labels.

We probably don’t want separate parameter for ‘654’ and ‘655’.
Poisson regression: use probability from Poisson count distribution.

— Many variations exist.



Other Parsimonious Parameterizations

* Sigmoid isn’t the only parsimonious p(y; | x,, w):
— Probit (uses CDF of normal distribution, very similar to logistic).
— Noisy-Or (simpler to specify probabilities by hand).
— Extreme-value loss (good with class imbalance).
— Cauchit, Gosset, and many others exist...



Unbalanced Training Sets

* Consider the case of binary classification where your training set has
99% class -1 and only 1% class +1.

— This is called an “unbalanced” training set
* Question: is this a problem?

 Answer: it depends!

— If these proportions are representative of the test set proportions, and you care
about both types of errors equally, then “no” it’s not a problem.
* You can get 99% accuracy by just always predicting -1, so ML can really help with the 1%.

— But it’s a problem if the test set is not like the training set (e.g. your data
collection process was biased because it was easier to get -1’s)

— It’s also a problem if you care more about one type of error, e.g. if mislabeling a
+1 as a -1 is much more of a problem than the opposite
* For example if +1 represents “tumor” and -1 is “no tumor”



Unbalanced Training Sets

* This issue comes up a lot in practice!

 How to fix the problem of unbalanced training sets?

— One way is to build a “weighted” model, like you did with weighted least
squares in your assignment (put higher weight on the training examples
with y=+1)

* This is equivalent to replicating those examples in the training set.
* You could also subsample the majority class to make things more balanced.

— Another option is to change to an asymmetric loss function that penalizes
one type of error more than the other.



Unbalanced Data and Extreme-Value Loss

e Consider binary case where:
— One class overwhelms the other class (‘unbalanced’ data).
— Really important to find the minority class (e.g., minority class is tumor).
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Unbalanced Data and Extreme-Value Loss

e Extreme-value distribution:
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Unbalanced Data and Extreme-Value Loss

e Extreme-value distribution:
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Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.

’)(yglx. ) X QX,’(:% )’(W“X;>

We neel: exply ywx) 7P

erp (-3 yu'r:) X;"?Xn 7 | (f we chos
Tie oy i g ®)=1)

pl2yw'x) g
oy ( 22 yv )7109@ < Lywk + 1yl 7 oy )

exp (73 yim )



Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
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— Example: sigmoid => hinge.
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Loss Functions from Probability Ratios

* General approach for defining losses using probability ratios:
1. Define constraint based on probability ratios.
2. Minimize violation of logarithm of constraint.

* Example: softmax => multi-class SVMs.
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Supervised Ranking with Pairwise Preferences

 Ranking with pairwise preferences:
— We aren’t given any explicit y, values.
— Instead we're given list of objects (i,j) where y; > y..
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I This approach can also be used To define  losses
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