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Admin

* Assignment 3:
— Check “update” thread on Piazza for correct definition of trainNdx.

* This could make your cross-validation code behave weird.

— Due tonight, 1 late day to hand in Monday, 2 late days for Wednesday.

 Midterm:
— Can view your exam after class today.

* Assignment 4:
— Due in 2 weeks.



Last Time: Stochastic Gradient

e Stochastic gradient minimizes average of smooth functions:
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— Function f,(w) is error for example ‘7".

* |terations perform gradient descent on one random example ‘i’
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— Cheap iterations even when ‘n’ is large, but doesn’t always decrease ‘f’.
— But solves problem if a' goes to O at an appropriate rate.

* Theory says use a! = O(1/t), in practice you need to experiment.



Last Time: Stochastic Gradient

e Stochastic gradient converges very slowly:
— But if your dataset is too big, there may not be much you can do.

* Practical tricks to improve performance:
— Constant or slowly-decreasing step-sizes and/or average the wt.
— Binary search for step size, stop using validation error (bonus slides).

* You can also improve performance by reducing the variance:
— Using “mini-batches” or random samples rather than 1 random sample.
— New “variance-reduced” methods (SAG, SVRG) for finite training sets.



Stochastic Gradient with Infinite Data

Amazing property of stochastic gradient:
— The classic convergence analysis does not rely on ‘n’” being finite.

Consider an infinite sequence of [ID samples.

— Or any dataset that is so large we cannot even go through it once.

Approach 1 (gradient descent):

— Stop collecting data once you have a very large ‘n’.
— Fit a regularized model on this fixed dataset.
Approach 2 (stochastic gradient):

— Perform a stochastic gradient iteration on each example as we see it.
— Never re-visit any example, always take a new one.



Stochastic Gradient with Infinite Data

* Approach 2 only looks at a data point once:
— Each example is an unbiased approximation of test data.

* So Approach 2 is doing stochastic gradient on test error:
— It cannot overfit.

* Up to a constant, Approach 2 achieves test error of Approach 1.
— This is sometimes used to justify SG as the “ultimate” learning algorithm.
e “Optimal test error by computing gradient of each example once!”

— In practice, Approach 1 usually gives lower test error.
* The constant factor matters!



(pause)



Motivation: Part of Speech (POS) Tagging

* Consider problem of finding the verb in a sentence:
— “The 340 students jumped at the chance to hear about POS features.”

e Part of speech (POS) tagging is the problem of labeling all words.
— 45 common syntactic POS tags.
— Current systems have ~97% accuracy.
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— You can achieve this by applying “word-level” classifier to each word.

 What features of a word should we use for POS tagging?



But first...

* Last time we discussed the effect of binary features in regression.
e Recall we can convert categorical feature to set of binary features:
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22,000.00 1 0 0 22,000.00
23 Bur 21,000.00 23 0 1 0 21,000.00
22 Van 0.00 22 1 0 0 0.00
25 Sur 57,000.00 25 0 0 1 57,000.00
19 Bur 13,500.00 19 0 1 0 13,500.00
22 Van 20,000.00 22 1 0 0 20,000.00

* This how we use a categorical feature (“city”) in regression models.



POS Features

* Regularized multi-class logistic regression with 19 features gives ~97% accuracy:

— Categorical features whose domain is all words (“lexical” features):
* The word (e.g., “jumped” is usually a verb).
* The previous word (e.g., “he” hit vs. “@” hit).
* The previous previous word.
* The next word.
* The next next word.
— Categorical features whose domain is combinations of letters (“stem” features):
* Prefix of length 1 (“what letter does the word start with?”)
* Prefix of length 2.
* Prefix of length 3.
* Prefix of length 4 (“does it start with JUMP?”)
» Suffix of length 1.
» Suffix of length 2.
» Suffix of length 3 (“does it end in ING?”)
» Suffix of length 4.
— Binary features (“shape” features):
* Does word contain a number?
* Does word contain a capital?
* Does word contain a hyphen?



Multi-Class Linear Classification

 We’'ve been considering linear models for binary classification:
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* E.g., is there a cat in this image or not?




Multi-Class Linear Classification

 Today we’ll discuss linear models for multi-class classification:
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* |n POS classification we have 43 possible labels instead of 2.
— This was natural for methods of Part 1 (decision trees, naive Bayes, KNN).
— For linear models, we need some new notation.



“One vs All” Classification

* One vs all method for turns binary classifier into multi-class.

* Training phase:
— For each class ‘c’, train binary classifier to predict whether example is a ‘c’.
— So if we have ‘k’ classes, this gives ‘k’ classifiers.

* Prediction phase:
— Apply the ‘k’ binary classifiers to get a “score” for each class ‘c’.
— Return the ‘¢’ with the highest score.



“One vs All” Classification

* “One vs all” logistic regression for classifying as cat/dog/person.

— Train a separate classifier for each class.
 Classifier 1 tries to predict +1 for “cat” images and -1 for “dog” and “person” images.
 Classifier 2 tries to predict +1 for “dog” images and -1 for “cat” and “person” images.
 Classifier 3 tries to predict +1 for “person” images and -1 for “cat” and “dog” images.

— This gives us a weight vector w_ for each class c’:
* Weights w_ try to predict +1 for class ‘c’ and -1 for all others.
* We'll use ‘W’ as a matrix with the w_ as rows:
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“One vs All” Classification

* “One vs all” logistic regression for classifying as cat/dog/person.

— Prediction on example x, given parameters ‘W’ :

— For each class ‘c’, compute w_'x..
* Ideally, we'll get sign(w_"x;) = +1 for one class and sign(w_"x;) = -1 for all others.
* In practice, it might be +1 for multiple classes or no class.

— To predict class, we take maximum value of w_"x; (“most positive”).



Digression: Multi-Label Classification

* A related problem is multi-label classification:
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* Which of the ‘k” objects are in this image?
— There may be more than one “correct” class label. 'Uj T LW chair

— Here we can also fit ‘k” binary classifiers.

* But we would take all sign(w_'x,)=+1 as the labels.




“One vs All” Multi-Class Classification

e Back to multi-class classification where we have 1 “correct” label:
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* Problem: We didn’t train the w_so that the largest w_'x. would be w/x..

— Each classifier is just trying to get the sign right.
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Multi-Class SVMs

* Can we define a loss that encourages largest w 'x; to be w/!x;?

e Recall our derivation of the hinge loss (SVMs):
— We wanted y.w'x. > 0 for all ‘i".
— We avoided non-degeneracy by aiming for yw'x, > 1.
— We used the constraint violation as our loss: max{0,1-y,wx}.

* We can derive multi-class SVMs using the same steps...



Multi-Class SVMs

* Can we define a loss that encourages largest w 'x; to be w/!x;?
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* For here, there are two ways to measure constraint violation:
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Multi-Class SVMs

* Can we define a loss that encourages largest w_'x, to be w,'x.?
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* For each training example ‘i’:
— “Sum” rule penalizes for each ‘c’ that violates the constraint.
— “Max” rule penalizes for one ‘c’ that violates the constraint the most.
e “Sum” gives a penalty of 'k’ for W=0, “max” gives a penalty of ‘1’.
* |f we add L2-regularization, both are called multi-class SVMs:
— “Max” rule is more popular, “sum” rule usually works better.
— Both are convex upper bounds on the 0-1 loss.



Multi-Class Logistic Regression

We derived binary logistic loss by smoothing a degenerate ‘max’.
— The degenerate constraint in the multi-class case can be written as:
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We want the right side to be as smaII as possible.
Let’s smooth the max with the log-sum-exp:
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— With W=0 this gives a loss of log(k).
This is the softmax loss, used in multi-class logistic regression.



Multi-Class Logistic Regression

* We sum the loss over examples and add regularization:
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* This objective is convex (should be clear for 15t and 3 terms).
— It’s differentiable so you can use gradient descent.

* When k=2, equivalent to binary logistic.
— Not obvious at the moment.



Digression: Frobenius Norm

 The Frobenius norm of a matrix ‘W’ is defined by:
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* We can write regularizer In matrix notation using:
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(pause)



Motivation: Dog Image Classification

e Suppose we're classifying images of dogs into breeds:




Learning with Preferences

Do we need to throw out images where label is ambiguous?
— We don’t have they..

— We want classifier to prefer Syberian husky over bulldog, Chihuahua, etc.
* Even though we don’t know if these are Syberian huskies or Inuit dogs.

— Can we design a loss that enforces preferences rather than “true” labels?



Learning with Pairwise Preferences (Ranking)

* Instead of y,, we’re given list of (c,,c,) preferences for each ‘i’:
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* Multi-class classification is special case of choosing (y,c) for all °c’.

* By following the earlier steps, we can get objectives for this setting:
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Learning with Pairwise Preferences (Ranking)

e Pairwise preferences for computer graphics:

— We have a smoke simulator, with several parameters:

o
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— Don’t know what the optimal parameters are, but we can ask the artist:

e “Which one looks more like smoke”?



Learning with Pairwise Preferences (Ranking)

e Pairwise preferences for humour:
— New Yorker caption contest:

hhhhhhhhhhhhhhhhhhhhh

— “Which one is funnier”?



Summary

Infinite datasets can be used with SG and do not overfit.
Word features: lexical, stem, shape.

One vs all turns a binary classifier into a multi-class classifier.
Multi-class SVMs measure violation of classification constraints.
Softmax loss is a multi-class version of logistic loss.

Next time:
— What do regression and regularization have to do with probabilities?



Feature Engineering

e “..some machine learning projects succeed and some fail. What
makes the difference? Easily the most important factor is the
features used.”

— Pedro Domingos

* “Coming up with features is difficult, time-consuming, requires
expert knowledge. "Applied machine learning" is basically feature
engineering.”

— Andrew Ng



Feature Engineering

e Better features usually help more than a better model.

* Good features would ideally:
— Capture most important aspects of problem.
— Generalize to new scenarios.
— Allow learning with few examples, be hard to overfit with many examples.

* There is a trade-off between simple and expressive features:
— With simple features overfitting risk is low, but accuracy might be low.
— With complicated features accuracy can be high, but so is overfitting risk.



Feature Engineering

The best features may be dependent on the model you use.

For counting-based methods like naive Bayes and decision trees:
— Need to address coupon collecting, but separate relevant “groups”.

For distance-based methods like KNN:
— Want different class labels to be “far”.

For regression-based methods like linear regression:
— Want labels to have a linear dependency on features.



Discretization for Counting-Based Methods

* For counting-based methods:

— Discretization: turn continuous into discrete.
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25
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22
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— Counting age “groups” could let us learn more quickly than exact ages.

e But we wouldn’t do this for a distance-based method.



Standardization for Distance-Based Methods

e Consider features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

e Should we convert to some standard ‘unit’?

— |t doesn’t matter for counting-based methods.

e |t matters for distance-based methods:

 KNN will focus on large values more than small values.
» Often we “standardize” scales of different variables (e.g., convert everything to grams).



Non-Linear Transformations for Regression-Based

* Non-linear feature/label transforms can make things more linear:

— Polynomial, exponential/logarithm, sines/cosines, RBFs.
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Discussion of Feature Engineering

* The best feature transformations are application-dependent.
— It’s hard to give general advice.

My advice: ask the domain experts.
— Often have idea of right discretization/standardization/transformation.

* If no domain expert, cross-validation will help.
— Or if you have lots of data, use deep learning methods from Part 5.



“All-Pairs” and ECOC Classification

e Alternative to “one vs. all” to convert binary classifier to multi-class is
“all pairs”.

— For each pair of labels ‘c” and ‘d’, fit a classifier that predicts +1 for examples of
class ‘c’ and -1 for examples of class ‘d’ (so each classifier only trains on examples
from two classes).

— To make prediction, take a vote of how many of the (k-1) classifiers for class ‘c’
predict +1.

— Often works better than “one vs. all”, but not so fun for large ‘k’.

* A variation on this is using “error correcting output codes” from
information theory (see Math 342).
— Each classifier trains to predict +1 for some of the classes and -1 for others.

— You setup the +1/-1 code so that it has an “error correcting” property.
* It will make the right decision even if some of the classifiers are wrong.



