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Admin

* Assignment 3:
— Check “update” thread on Piazza for correct definition of trainNdx.

* This could make your cross-validation code behave weird.

— Due Friday, 1 late day to hand in Monday, 2 late days for Wednesday.

e Midterm:

— Can view your exam after class this week.

* Assignment 4 posted.



Linear Models with Binary Features

* What is the effect of a binary feature on linear regression?

1975
1975
1980

1
0
1
1980 0

1.85
2.25
1.95
2.30

* Adding a bias B, our linear model is:

ha;9m‘= P +w ¥ year t w, ¥ gender

* The ‘gender’ variable causes a change in y-intercept:
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Linear Models with Binary Features

 What if different genders have different slopes?

— You can use gender-specific features.

Bias Year Bias Year
m (gender=1) | (gender=1) | (gender=0) | (gender=0
1 0 0

1975 1 1975
1975 0 :7 0 0 1 1975
13980 1 1 1980 0 0

1980 0 0 0 1 1980
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Linear Models with Binary Features

* To share information across genders, include a “global” version.
“Vear | ender
1975 1 1975 1975
1975 0 ,.-——7 1975 0 1975
1980 1 1980 1980 0
1980 0 1980 0 1980

* “Global” year feature: influence of time on both genders.
— E.g., improvements in technique.

* “Local” year feature: gender-specific deviation from global trend.

— E.g., different effects of performance-enhancing drugs.
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Motivation: “Personalized” Important E-mails

* Recall that we discussed identifying ‘important’ e-mails?

| » Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) lisis Intro to Computer Science 10:20 am
Inbox (3) .
» Issam Laradji Inbox  Convergence rates forcu &= 9:49 am
Starred
<!mpo§nt > * sameh, Mark, sameh (3) Inbox  Graduation Project Dema = 8:01 am
Sent Mai - .
e » Mark .. sara, Sara (11) Label propagation = 7:57am

* There might be some “globally” important messages:

— “This is your mother, something terrible happened, give me a call ASAP”

* But your “important” message may be unimportant to others.

— Similar for spam: “spam” for one user could be “not spam” for another.



The Big Global/Local Feature Table for E-mails

 Each row is one e-mail (there are lots of rows):
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Predicting Importance of E-mail For New User

* Consider a new user:
— We start out with no information about them.
— So we use global features to predict what is important to a generic user.
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* With more data, update global features and user’s local features:
— Local features make prediction personalized.
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— What is important to this user? o wser

* G-mail system: classification with logistic regression.
— Trained with a variant of stochastic gradient.



Motivation: Big-N Problems
* Consider fitting a least squares model:
) A 2
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* Gradient methods are effective when ‘d’” is very large.
— O(nd) per iteration instead of O(nd? + d3) to solve as linear system.

e But what if number of training examples ‘n’ is very large?
— All Gmails, all products on Amazon, all homepages, all images, etc.



Gradient Descent vs. Stochastic Gradient

Recall the gradient descent algorithm:
t

For least squares, our gradient has the form:

n
T
V w> 4 St( ‘ 7I>§;~1
Notice that it’s cheaper than O(nd) if the x. are very sparse:

— Each e-mail has a limited number of non-zero features,
— Each e-mail only has “global” features and “local” features for one user.

But the cost of computing the gradient is linear in ‘n’.
— As ‘n’ gets large, gradient descent iterations become expensive.



Gradient Descent vs. Stochastic Gradient

 Common solution to this problem is stochastic gradient algorithm:

e Uses the gradient of a randomly-chosen training example:

V(W) = (wy — ya7><,~

e Cost of computing this one gradient is independent of ‘n’.
— |terations are ‘n’ times faster than gradient descent iterations.
— With 1 billion training examples, this iteration is 1 billion times faster.



Stochastic Gradient (SG)

e Stochastic gradient is an iterative optimization algorithm:
— We start with some initial guess, w®.
— Generate new guess by moving in the negative gradient direction:

w = w? = LYW

* For a random training example ‘i’.

— Repeat to successively refine the guess:
Sl t -
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* For a random training example ‘i’.



Stochastic Gradient (SG)

e Stochastic gradient applies when minimizing averages:
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* Basically, all our regression losses except “brittle” regression.
— Multiplying be positive constant doesn’t change location of optimal ‘w’.



Why Does Stochastic Gradient Work / Not Work?

 Main problem with stochastic gradient:

— Gradient of random example might point in the wrong direction.

* Does this have any hope of working?
— The average of the random gradients is the full gradient.

N
Mean over VW) is IZ VE WD which is V()

— The algorithm is going in the right direction on average.



Gradient Descent vs. Stochastic Gradient (SG)

e Gradient descent:

* Stochastic gradient:|
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Gradient Descent in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Stochastic Gradient in Action
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Effect of ‘w’ Location on Progress
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 We'll still make good progress if most gradients points in right direction.



Variance of the Random Gradients

The “confusion” is captured by a kind of variance of the gradients:

L Z IR = FROIF

If the variance is O, every step goes in the right direction.
— We're outside of region of confusion.

If the variance is small, most steps point in the direction.
— We’re just inside region of confusion.

If the variance is large, many steps will point in the wrong direction.

— Middle of region of confusion, where w™ lives.



Effect of the Step-Size

* We can reduce the effect of the variance with the step size.
— Variance slows progress by amount proportional to square of step-size.
— So as the step size gets smaller, the variance has less of an effect.

* For a fixed step-size, SG makes progress until variance is too big.

* This leads to two “phases” when we use a constant step-size:
1. Rapid progress when we are far from the solution.

2. Erratic behaviour confined to a “ball” around solution.
(Radius of ball is proportional to the step-size.)



Stochastic Gradient with Constant Step Size




Stochastic Gradient with Constant Step Size
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Stochastic Gradient with Decreasing Step Sizes

* To get convergence, we need a decreasing step size.

— Shrinks size of ball to zero so we converge to w".

 Butit can’t shrink too quickly:
— Otherwise, we don’t move fast enough to reach the ball.

* Classic solution to this problem is step-sizes a' satisfying:
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* We can achieve this by using a step-size sequence like a!= 0(1/t).

— E.g., at = .001/t.



Stochastic Gradient Methods in Practice

* Unfortunately, setting at = O(1/t) works badly in practice:
— Initial steps can be very large.
— Later steps get very tiny.

* Practical tricks:

— Some authors add extra parameters like at = y/(t + A).
— Theory and practice support using steps that go to zero more slowly:

0(’( — O( '/\’-{> or O(t = 0( /> ((ondaﬂ")

-~
v = —
* Butreturna w%ighted average of the iterations: /7 "
—t _ X vV
WS Z S ey s a sl g Unfn g
- \ . / “t“‘ ’
[c= b "We,'(/m‘ of i‘f@rqﬁom /<\ w N Z W



Stochastic Gradient with Averaging
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Gradient Descent vs. Stochastic Gradient
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e 2012: methods with cost of stochastic gradient, progress of full gradient.
— Key idea: if ‘n’ is finite, you can use a memory instead of having o, go to zero.
— First was stochastic average gradient (SAG), “low-memory” version is SVRG.



This graph shows how algorithms have become tast and more efficient over time. The horizontal
axis represents time and the vertical axis represents error. Older algorithms (yellow) were very
slow but had very little error. Faster algorithms were created by only analyzing some of the data
(orange). The method was faster but had an accuracy limit. Schmidt's algorithm is faster and has
no accuracy limit. Aiken Lao / The Ubysse



Summary

Global vs. local features allow “personalized” predictions.
Stochastic gradient methods let us use huge datasets.

Step-size in stochastic gradient is a huge pain:
— Needs to go to zero to get convergence, but this works badly.
— Constant step-size works well, but only up to a certain point.

SAG and other newer methods fix convergence for finite datasets.

Next time: multi-class models and “finding the verb” in sentences.



A Practical Strategy For Choosing the Step-Size

* All these step-sizes have a constant factor in the “O” notation.
— Eg, o(t:Z <—’ Houv Jo we (_‘\0053 Tl\"b (om;'/‘am'{?
\[7

* We don’t know how to set step size as we go in the stochastic case.
— And choosing wrong y can destroy performance.

e Common practical trick:
— Take a small amount of data (maybe 5% of the original data).
— Do a binary search for y that most improves objective on this subset.



A Practical Strategy for Deciding When to Stop

* |n gradient descent, we can stop when gradient is close to zero.

* |n stochastic gradient:
— Individual gradients don’t necessarily go to zero.
— We can’t see full gradient, so we don’t know when to stop.

* Practical trick:
— Every ‘k’ iterations (for some large ‘k’), measure validation set error.
— Stop if the validation set error isn’t improving.



More Practical Issues

* Does it make sense to use more than 1 random example?
— Yes, you can use a “mini-batch” of examples.
14 _ audomn el
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— The variance is inversely proportional to the mini-batch size.

* You can use bigger step size as the batch size increases.

* Big gains for going from 1 to 2, less big gains from going from 100 to 101.

— Useful for vectorizing/parallelizing code.

* Evaluate one gradient on each core.



Linear Models with Binary Features
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Linear Models with Binary Features

CFestre 1 | Feature2
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Linear Models with Binary Features
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Linear Models with Binary features
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Linear Models with Binarv/features
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Linear Models with Binarv/features
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Ordinal Features

* Categorical features with an ordering are called ordinal features.

Bad

Very Good
Good
Good
Very Bad
Good

Medium

R N O T T O “\

* If using decision trees, makes sense to replace with numbers.
— Captures ordering between the ratings.
— A rule like (rating 2 3) means (rating > Good), which make sense.



Ordinal Features

* |f using linear models, this would assumes ratings are equally spaced.

— The difference between “Bad” and “Medium” is similar to the distance between “Good”
and “Very Good”.

* An alternative that preserves ordering with binary features:

0

Bad 1 0 0
Very Good 1 1 1 1
Good 1 1 1 0
Good 1 1 1 0
Very Bad 0 0 0 0
Good 1 1 1 0
Medium 1 1 0 0
* Regression weight w4, represents:

— “How much medium changes prediction over bad”.



