CPSC 340: Machine Learning and Data Mining

Kernel Trick Fall 2017

Admin

- Assignment 3:
 - Due Friday.
- Midterm:
 - Can view your exam during instructor office hours or after class this week.

Support Vector Machines for Non-Separable

• What about data that is not even close to separable?

Support Vector Machines for Non-Separable

- What about data that is not even close to separable?
 - It may be separable under change of basis (or closer to separable).

Support Vector Machines for Non-Separable

- What about data that is not even close to separable?
 - It may be separable under change of basis (or closer to separable).

Multi-Dimensional Polynomial Basis

• Recall fitting polynomials when we only have 1 feature:

$$y_{i} = w_{0} + w_{1}x_{i} + w_{2}x_{i}^{2}$$

• We can fit these models using a change of basis:

• How can we do this when we have a lot of features?

Multi-Dimensional Polynomial Basis

• Polynomial basis for d=2 and p=2:

$$X = \begin{bmatrix} 0.2 & 0.3 \\ 1 & 0.5 \\ -0.5 & -0.1 \end{bmatrix} \longrightarrow Z = \begin{bmatrix} 1 & 0.2 & 0.3 & (0.2)^2 & (0.3)^2 & (0.1)(0.3) \\ 1 & 1 & 0.5 & (1)^2 & (0.5)^2 & (1) & (0.5) \\ 1 & 0.5 & -0.1 & (0.5)^2 & (-0.1)^2 & (-0.5)(-0.1) \end{bmatrix}$$

$$\lim_{hias} x_{i1} \quad x_{i2} \quad (x_{i1})^2 & (x_{i1})^2 & (x_{i1})(x_{i2})$$

- With d=4 and p=3, the polynomial basis would include:
 - Bias variable and the x_{ij} : 1, x_{i1} , x_{i2} , x_{i3} , x_{i4} .
 - The x_{ij} squared and cubed: $(x_{i1})^2$, $(x_{i2})^2$, $(x_{i3})^2$, $(x_{i4})^2$, $(x_{i1})^3$, $(x_{i2})^3$, $(x_{i3})^3$, $(x_{i4})^3$.
 - Two-term interactions: $x_{i1}x_{i2}$, $x_{i1}x_{i3}$, $x_{i1}x_{i4}$, $x_{i2}x_{i3}$, $x_{i2}x_{i4}$, $x_{i3}x_{i4}$.
 - Cubic interactions: $x_{i1}x_{i2}x_{i3}$, $x_{i2}x_{i3}x_{i4}$, $x_{i1}x_{i3}x_{i4}$, $x_{i1}^2x_{i2}$, $x_{i1}^2x_{i3}$, $x_{i1}^2x_{i4}$, $x_{i1}x_{i2}^2$, $x_{i2}^2x_{i3}$, $x_{i2}^2x_{i4}$, $x_{i1}x_{i3}^2$, $x_{i2}x_{i3}^2x_{i4}$, $x_{i1}x_{i4}^2$, $x_{i2}x_{i4}^2$, $x_{i3}x_{i4}^2$.

Kernel Trick

• If we go to degree p=5, we'll have O(d⁵) quintic terms:

For large 'd' and 'p', storing a polynomial basis is intractable!
 - 'Z' has O(d^p) columns, so it does not fit in memory.

- Today: efficient polynomial basis for L2-regularized least squares.
 - Main tools: the "other" normal equations and the "kernel trick".

The "Other" Normal Equations

• Recall the L2-regularized least squares objective with basis 'Z':

$$f(v) = \frac{1}{2} ||Z_{w} - y||^{2} + \frac{3}{2} ||v||^{2}$$

• We showed that the minimum is given by

$$V = (Z^T Z + \lambda I)^T Z^T y$$

(in practice you still solve the linear system, since inverse can be numerically unstable – see CPSC 302)

• With some work (bonus), this can equivalently be written as:

$$v = Z^{T} (ZZ^{T} + \lambda I)'' y$$

- This is faster if n << k:
 - Cost is $O(n^2k + n^3)$ instead of $O(nk^2 + k^3)$.
 - But for the polynomial basis, this is still too slow since $k = O(d^p)$.

The "Other" Normal Equations

- With the "other" normal equations we have $v = Z^T (ZZ^T + \lambda I)'_Y$
- Given test data \tilde{X} , predict \hat{y} by forming \tilde{Z} and then using:

$$\hat{y} = \tilde{z} v$$

$$= \tilde{z} z^{T} (z z^{T} + \lambda I)^{T} y$$

$$\tilde{k} \quad \tilde{k}$$

$$t \times I = \tilde{k} ((k + \lambda I)^{T} y)$$

$$t \times I = \tilde{k} (k + \lambda I)^{T} y$$

- Notice that if you have K and \tilde{K} then you do not need Z and \tilde{Z} .
- Key idea behind "kernel trick" for certain bases (like polynomials):
 - We can efficiently compute K and \widetilde{K} even though forming Z and \widetilde{Z} is intractable.

Gram Matrix

• The matrix $\mathbf{K} = \mathbf{Z}\mathbf{Z}^{\mathsf{T}}$ is called the Gram matrix \mathbf{K} .

- K contains the dot products between all training examples.
 - Similar to 'Z' in RBFs, but using dot product as "similarity" instead of distance.

Gram Matrix

• The matrix $\tilde{K} = \tilde{Z}Z^T$ has dot products between train and test examples:

• Kernel function: $k(x_i, x_j) = z_i^T z_j$.

- Computes dot product between in basis $(z_i^T z_i)$ using original features x_i and x_i .

Kernel Trick

Kernel Trick

to apply linear regression, I only need to know K and K Use x; to the and the appeter the Directly compute kij from X; and X; Final result is nxn (no matter how large Z; is)

Linear Regression vs. Kernel Regression

Linear Regression Kernel Regression

$$T_{raining}$$

I. Form basis 2 from X.
2. Compute $w = (2^72 + 3\overline{1})^{-1} (2^7y)$
I. Form basis \widetilde{Z} from \widetilde{X}
I. Form basis \widetilde{Z} from \widetilde{X}
2. Compute $\widehat{y} = \widetilde{Z}w$
 T_{esting} :
I. Form inner products \widetilde{K} from X and \widetilde{X}
2. Compute $\widehat{y} = \widetilde{Z}w$
 $(Everything you need to know about Z and \widetilde{Z} is
Contained within K and \widetilde{K})$

Example: Degree-2 Kernel

- Consider two examples x_i and x_j for a 2-dimensional dataset: $\chi_i = (x_{i1}, x_{i2})$ $x_j = (x_{j1}, x_{j2})$
- And consider a particular degree-2 basis:

$$Z_{i} = (x_{i1}^{2} \sqrt{2} x_{i1} x_{i2} x_{i2}^{2}) \qquad Z_{j} = (x_{j1}^{2} \sqrt{2} x_{j1} x_{j2} x_{j2}^{2})$$

• We can compute inner product $z_i^T z_i$ without forming z_i and z_i :

$$Z_{i}^{T} Z_{j} = \chi_{i1}^{2} \chi_{j1}^{2} + (\sqrt{2} \chi_{i1} \chi_{i2}) (\sqrt{2} \chi_{j1} \chi_{j2}) + \chi_{i2}^{2} \chi_{j2}^{2}$$

$$= \chi_{i1}^{2} \chi_{j1}^{2} + 2\chi_{i1} \chi_{i2} \chi_{j1} + \chi_{i2}^{2} \chi_{j2} + \chi_{i1}^{2} \chi_{i2}^{2}$$

$$= (\chi_{i1} \chi_{j1} + \chi_{i2} \chi_{j2})^{2} \qquad "completing the square"$$

$$= (\chi_{i1}^{7} \chi_{j})^{2} \qquad No \quad need \quad for \quad Z_{i} \quad to \quad compute \quad Z_{i}^{7} Z_{i}^{2}$$

Polynomial Kernel with Higher Degrees

• Let's add a bias and linear terms to our degree-2 basis:

$$Z_{i} = \begin{bmatrix} 1 & \sqrt{2}x_{i1} & \sqrt{2}x_{i2} & x_{i1}^{2} & \sqrt{2}x_{i1}x_{i2} & x_{i2}^{2} \end{bmatrix}$$

• I can compute inner products using:

$$\begin{aligned} (1 + x_{i}^{T}x_{j})^{2} &= 1 + 2x_{i}^{T}x_{j} + (x_{i}^{T}x_{j})^{2} \\ &= 1 + 2x_{i|}x_{j|} + 2x_{i2}x_{j2} + x_{i|}^{2}x_{j|}^{2} + 2x_{i|}x_{i2}x_{j|}x_{j2} + x_{i2}^{2}x_{j2}^{2} \\ &= \left[1 + 2x_{i|}x_{j|} + 2x_{i2}x_{j2} + x_{i1}^{2}x_{j2} + 2x_{i1}x_{i2}x_{j1} + 2x_{i2}x_{j1}x_{j2} + 2x_{i2}x_{j2} + 2x_{i2}x_{i2} + 2x_{i2}$$

Polynomial Kernel with Higher Degrees

• To get all degree-4 "monomials" I can use:

$$Z_i^T z_j = (x_i^T x_j)^4$$
Equivalent to using a z_i with weighted versions of $x_{i1}^4 x_{i1}^3 x_{i2} x_{i1}^2 x_{i2} x_{i1} x_{i2} x_{i2} x_{i1} x_{i2} x_{i2} x_{i1} x_{i2} x_{i2$

- To also get lower-order terms use $z_i^T z_j = (1 + x_i^T x_j)^4$
- The general degree-p polynomial kernel function:

$$k(x_{i}, x_{j}) = (1 + x_{i}^{T} x_{j})^{p}$$

- Works for any number of features 'd'.
- But cost of computing one $z_i^T z_i$ is O(d) instead of O(d^p).
- Take-home message: I can compute dot-products without the features.

Kernel Trick with Polynomials

- Using polynomial basis of degree 'p' with the kernel trick:
 - Compute K and \widetilde{K} using:

- Training cost is only O(n²d + n³), despite using k=O(d^p) features.
 - We can form 'K' in $O(n^2d)$, and we need to "invert" an 'n x n' matrix.
 - Testing cost is only O(ndt), cost to formd \widetilde{K} .

Gaussian-RBF Kernel

• Most common kernel is the Gaussian RBF kernel:

$$k(x_{i}, x_{j}) = exp(-\frac{||x_{i} - x_{j}||^{2}}{2\sigma^{2}})$$

- Same formula and behaviour as RBF basis, but not equivalent:
 - Before we used RBFs as a basis, now we're using them as inner-product.
- Basis z_i giving Gaussian RBF kernel is infinite-dimensional.

- If d=1 and σ =1, it corresponds to using this basis (bonus slide):

$$Z_{i} = ex_{p}(-x_{i}^{2}) \left[1 \quad \sqrt{\frac{2}{1!}} x_{i} \quad \sqrt{\frac{2}{3!}} x_{i}^{2} \quad \sqrt{\frac{2^{3}}{3!}} x_{i}^{3} \quad \sqrt{\frac{2^{4}}{4!}} x_{i}^{4} \quad \cdots \right]$$

Motivation: Finding Gold

- Kernel methods first came from mining engineering ("Kriging"):
 - Mining company wants to find gold.
 - Drill holes, measure gold content.
 - Build a kernel regression model (typically use RBF kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php

Kernel Trick for Non-Vector Data

• Consider data that doesn't look like this:

X =	0.5377 1.8339	$0.3188 \\ -1.3077$	$3.5784 \\ 2.7694$, y =		$\begin{bmatrix} +1 \\ -1 \end{bmatrix}$	
	$-2.2588 \\ 0.8622$	$-0.4336 \\ 0.3426$	$-1.3499 \\ 3.0349$		-1 + 1	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$, 1	

• But instead looks like this:

$$X = \begin{bmatrix} \text{Do you want to go for a drink sometime?} \\ \text{J'achète du pain tous les jours.} \\ \text{Fais ce que tu veux.} \\ \text{There are inner products between sentences?} \end{bmatrix}, y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}$$

- Kernel trick lets us fit regression models without explicit features:
 - We can interpret $k(x_i, x_i)$ as a "similarity" between objects x_i and x_i .
 - We don't need features if we can compute 'similarity' between objects.
 - There are "string kernels", "image kernels", "graph kernels", and so on.

Valid Kernels

- What kernel functions k(x_i,x_i) can we use?
- Kernel 'k' must be an inner product in some space:

- There must exist a mapping from x_i to some z_i such that $k(x_i, x_i) = z_i^T z_i$.

- It can be hard to show that a function satisfies this.
 - Infinite-dimensional eigenvalue equation.

• But like convex functions, there are some simple rules for constructing "valid" kernels from other valid kernels (bonus slide).

Kernel Trick for Other Methods

- Besides L2-regularized least squares, when can we use kernels?
 - We can compute Euclidean distance with kernels:

$$||z_{i} - z_{j}||^{2} = z_{i}^{T} z_{i} - 2 z_{i}^{T} z_{j} + z_{j}^{T} z_{j} = k(x_{i}, x_{i}) - 2k(x_{i}, x_{j}) + k(x_{j}, x_{j})$$

- All of our distance-based methods have kernel versions:
 - Kernel k-nearest neighbours.
 - Kernel clustering k-means (allows non-convex clusters)
 - Kernel density-based clustering.
 - Kernel hierarchical clustering.
 - Kernel distance-based outlier detection.
 - Kernel "Amazon Product Recommendation".

Kernel Trick for Other Methods

- Besides L2-regularized least squares, when can we use kernels?
 - "Representer theorems" (bonus slide) have shown that any L2-regularized linear model can be kernelized:
 - L2-regularized robust regression.
 - L2-regularized brittle regression.
 - L2-regularized logistic regression.
 - L2-regularized hinge loss (SVMs).

Logistic Regression with Kernels

Kernel-Poly Logistic Regression

Kernel-Linear Logistic Regression

Kernel-RBF Logistic Regression

Summary

- High-dimensional bases allows us to separate non-separable data.
- Kernel trick allows us to use high-dimensional bases efficiently.
 - Write model to only depend on inner products between features vectors.

- Kernels let us use similarity between objects, rather than features.
 - Allows some exponential- or infinite-sized feature sets.
 - Applies to L2-regularized linear models and distance-based models.
- Next time: how do we train on all of Gmail?

Why is inner product a similarity?

- It seems weird to think of the inner-product as a similarity.
- But consider this decomposition of squared Euclidean distance:

$$\frac{1}{2} ||x_i - x_j||^2 = \frac{1}{2} ||x_i||^2 - x_i^T x_j + \frac{1}{2} ||x_j||^2$$

- If all training examples have the same norm, then minimizing Euclidean distance is equivalent to maximizing inner product.
 - So "high similarity" according to inner product is like "small Euclidean distance".
 - The only difference is that the inner product is biased by the norms of the training examples.
 - Some people explicitly normalize the x_i by setting $x_i = (1/||x_i||)x_i$, so that inner products act like the negation of Euclidean distances.

Bonus Slide: Equivalent Form of Ridge Regression

Note that \hat{X} and Y are the same on the left and right side, so we only need to show that

$$(X^T X + \lambda I)^{-1} X^T = X^T (X X^T + \lambda I)^{-1}.$$
(1)

A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is

$$(E - FH^{-1}G)^{-1}FH^{-1} = E^{-1}F(H - GE^{-1}F)^{-1}.$$

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write the left side of (1) as

$$(X^{T}X + \lambda I)^{-1}X^{T} = (\lambda I + X^{T}X)^{-1}X^{T} = (\lambda I + X^{T}IX)^{-1}X^{T} = (\lambda I - X^{T}(-I)X)^{-1}X^{T} = -(\lambda I - X^{T}(-I)X)^{-1}X^{T}(-I)X^{T} = -(\lambda I - X^{T}(-I)X)^{-1}X^{T}(-I)X^{T} = -(\lambda I - X^{T}(-I)X)^{-1}X^{T} = -(\lambda I - X^{T}(-I)X)^{-1}X$$

Now apply the matrix inversion with $E = \lambda I$ (so $E^{-1} = \left(\frac{1}{\lambda}\right) I$), $F = X^T$, H = -I (so $H^{-1} = -I$ too), and G = X:

$$-(\lambda I - X^{T}(-I)X)^{-1}X^{T}(-I) = -(\frac{1}{\lambda})IX^{T}(-I - X\left(\frac{1}{\lambda}\right)X^{T})^{-1}.$$

Now use that $(1/\alpha)A^{-1} = (\alpha A)^{-1}$, to push the $(-1/\lambda)$ inside the sum as $-\lambda$,

$$-(\frac{1}{\lambda})IX^{T}(-I - X\left(\frac{1}{\lambda}\right)X^{T})^{-1} = X^{T}(\lambda I + XX^{T})^{-1} = X^{T}(XX^{T} + \lambda I)^{-1}.$$

Guasian-RBF Kernels

• The most common kernel is the Gaussian-RBF (or 'squared exponential') kernel,

$$k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right)$$

• What function $\phi(x)$ would lead to this as the inner-product?

• To simplify, assume d = 1 and $\sigma = 1$,

$$k(x_i, x_j) = \exp(-x_i^2 + 2x_i x_j - x_j^2)$$

= $\exp(-x_i^2) \exp(2x_i x_j) \exp(-x_j^2),$

so we need $\phi(x_i) = \exp(-x_i^2)z_i$ where $z_i z_j = \exp(2x_i x_j)$. • For this to work for all x_i and x_j , z_i must be infinite-dimensional. • If we use that

$$\exp(2x_i x_j) = \sum_{k=0}^{\infty} \frac{2^k x_i^k x_j^k}{k!},$$

then we obtain

$$\phi(x_i) = \exp(-x_i^2) \begin{bmatrix} 1 & \sqrt{\frac{2}{1!}} x_i & \sqrt{\frac{2^2}{2!}} x_i^2 & \sqrt{\frac{2^3}{3!}} x_i^3 & \cdots \end{bmatrix}.$$

Constructing Valid Kernels

- If $k_1(x_i, x_j)$ and $k_2(x_i, x_j)$ are valid kernels, then the following are valid kernels:
 - $k_1(\phi(x_i), \phi(x_j)).$
 - $\alpha k_1(x_i, x_j) + \beta k_2(x_i, x_j)$ for $\alpha \ge 0$ and $\beta \ge 0$.
 - $k_1(x_i, x_j)k_2(x_i, x_j)$.
 - $\phi(x_i)k_1(x_i, x_j)\phi(x_j)$.
 - $\exp(k_1(x_i, x_j)).$
- Example: Gaussian-RBF kernel:

$$k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right)$$
$$= \underbrace{\exp\left(-\frac{\|x_i\|^2}{\sigma^2}\right)}_{\phi(x_i)} \underbrace{\exp\left(\frac{2}{\sigma^2} \underbrace{x_i^T x_j}_{\text{valid}}\right)}_{\exp(\text{valid})} \underbrace{\exp\left(-\frac{\|x_j\|^2}{\sigma^2}\right)}_{\phi(x_j)}.$$

Representer Theorem

• Consider linear model differentiable with losses f_i and L2-regularization,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n f_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2.$$

• Setting the gradient equal to zero we get

$$0 = \sum_{i=1}^{n} f_i'(w^T x_i) x_i + \lambda w.$$

• So any solution w^* can written as a linear combination of features x_i ,

$$w^* = -\frac{1}{\lambda} \sum_{i=1}^n f'_i((w^*)^T x_i) x_i = \sum_{i=1}^n z_i x_i$$

= $X^T z$.

• This is called a representer theorem (true under much more general conditions).

Representer Theorem

• Using representer theorem we can use $w = X^T z$ in original problem,

$$\begin{aligned} & \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n f_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2 \\ & = \underset{z \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{i=1}^n f_i(\underbrace{z^T X x_i}_{x_i^T X^T z}) + \frac{\lambda}{2} \|X^T z\|^2 \end{aligned}$$

• Now defining $f(z) = \sum_{i=1}^{n} f_i(z_i)$ for a vector z we have

$$= \underset{z \in \mathbb{R}^{n}}{\operatorname{argmin}} f(XX^{T}z) + \frac{\lambda}{2}z^{T}XX^{T}z$$
$$= \underset{z \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{f(Kz)}{2} + \frac{\lambda}{2}z^{T}Kz.$$

• Similarly, at test time we can use the n variables z,

$$\hat{X}w = \hat{X}X^T z = \hat{K}z.$$