CPSC 340:
Machine Learning and Data Mining

Kernel Trick
Fall 2017
Admin

• Assignment 3:
 – Due Friday.

• Midterm:
 – Can view your exam during instructor office hours or after class this week.
Support Vector Machines for Non-Separable

• What about data that is not even close to separable?

Support Vector Machines for Non-Separable

What about data that is not even close to separable?

- It may be separable under change of basis (or closer to separable).

For more details, see http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
Support Vector Machines for Non-Separable

• What about data that is not even close to separable?
 – It may be separable under change of basis (or closer to separable).

Multi-Dimensional Polynomial Basis

• Recall fitting **polynomials** when we only have 1 feature:

\[y_i = w_0 + w_1 x_i + w_2 x_i^2 \]

• We can fit these models using a **change of basis**:

\[
\begin{bmatrix}
0.2 \\
-0.5 \\
1 \\
4
\end{bmatrix}
\quad \begin{bmatrix}
0.2 \\
-0.5 \\
1 \\
4
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0.2 & (0.2)^2 \\
1 & -0.5 & (-0.5)^2 \\
1 & 1 & (1)^2 \\
1 & 4 & (4)^2
\end{bmatrix}
\]

• How can we do this when we have a lot of features?
Multi-Dimensional Polynomial Basis

- Polynomial basis for $d=2$ and $p=2$:

\[
X = \begin{bmatrix}
0.2 & 0.3 \\
1 & 0.5 \\
-0.5 & -0.1
\end{bmatrix}
\]

\[
Z = \begin{bmatrix}
1 & 0.2 & 0.3 & (0.2)^2 & (0.3)^2 & (0.1)(0.3) \\
1 & 1 & 0.5 & (1)^2 & (0.5)^2 & (1)(0.5) \\
1 & 0.5 & -0.1 & (0.5)^2 & (-0.1)^2 & (-0.5)(-0.1)
\end{bmatrix}
\]

- With $d=4$ and $p=3$, the polynomial basis would include:

 - Bias variable and the x_{ij}: $1, x_{i1}, x_{i2}, x_{i3}, x_{i4}$.
 - The x_{ij} squared and cubed: $(x_{i1})^2, (x_{i2})^2, (x_{i3})^2, (x_{i4})^2, (x_{i1})^3, (x_{i2})^3, (x_{i3})^3, (x_{i4})^3$.
 - Two-term interactions: $x_{i1}x_{i2}, x_{i1}x_{i3}, x_{i1}x_{i4}, x_{i2}x_{i3}, x_{i2}x_{i4}, x_{i3}x_{i4}$.
 - Cubic interactions: $x_{i1}^2x_{i2}, x_{i1}^2x_{i3}, x_{i1}^2x_{i4}, x_{i1}x_{i3}^2, x_{i1}x_{i4}^2, x_{i2}x_{i3}^2, x_{i2}x_{i4}^2, x_{i3}x_{i4}^2, x_{i3}x_{i4}^2$.
Kernel Trick

• If we go to degree $p=5$, we’ll have $O(d^5)$ quintic terms:

$$X_{i1}^5 x_{i1}^4 x_{i2}^4 x_{i1}^4 x_{i3}^4 \ldots x_{i1}^4 x_{i1}^3 x_{i2}^2 x_{i1}^2 x_{i3}^2 \ldots x_{i1}^2 x_{i1}^2 x_{i2}^2 \ldots x_{i1}^2 x_{i2}^2 x_{i3}^2 \ldots \ldots \ldots x_{id}^5$$

• For large ‘d’ and ‘p’, storing a polynomial basis is intractable!
 – ‘Z’ has $O(d^p)$ columns, so it does not fit in memory.

• Today: efficient polynomial basis for L2-regularized least squares.
 – Main tools: the “other” normal equations and the “kernel trick”.
The “Other” Normal Equations

• Recall the L2-regularized least squares objective with basis ‘Z’:
 \[f(\nu) = \frac{1}{2} \| Z\nu - y \|^2 + \frac{\lambda}{2} \| \nu \|^2 \]

• We showed that the minimum is given by
 \[\nu = (Z^T Z + \lambda I)^{-1} Z^T y \]

(in practice you still solve the linear system, since inverse can be numerically unstable – see CPSC 302)

• With some work (bonus), this can equivalently be written as:
 \[\nu = Z^T (Z Z^T + \lambda I)^{-1} y \]

• This is faster if \(n << k \):
 – Cost is \(O(n^2 k + n^3) \) instead of \(O(nk^2 + k^3) \).
 – But for the polynomial basis, this is still too slow since \(k = O(d^p) \).
The “Other” Normal Equations

• With the “other” normal equations we have \(\nu = Z^T(ZZ^T + \lambda I)^{-1}y \)
• Given test data \(\tilde{X} \), predict \(\hat{y} \) by forming \(\tilde{Z} \) and then using:

\[
\hat{y} = \tilde{Z} \nu = \tilde{Z} \left(\begin{array}{c}
Z^T (Z Z^T + \lambda I)^{-1} y
\end{array}\right)
\]

\[
= \tilde{Z} \left(\begin{array}{c}
K
\end{array}\right)
\]

\[
= \tilde{K} \left(\begin{array}{c}
1
\end{array}\right)
\]

\[
= K \left(\begin{array}{c}
1
\end{array}\right)
\]

\[
= K \left(\begin{array}{c}
1
\end{array}\right)
\]

• Notice that if you have \(K \) and \(\tilde{K} \) then you do not need \(Z \) and \(\tilde{Z} \).
• Key idea behind “kernel trick” for certain bases (like polynomials):
 – We can efficiently compute \(K \) and \(\tilde{K} \) even though forming \(Z \) and \(\tilde{Z} \) is intractable.
The matrix \(K = ZZ^T \) is called the Gram matrix \(K \).

\[
K = ZZ^T = \begin{bmatrix}
Z_1^T \\
Z_2^T \\
\vdots \\
Z_n^T
\end{bmatrix}
\begin{bmatrix}
Z_1 \\
Z_2 \\
\vdots \\
Z_n
\end{bmatrix}
\]

\[
= \begin{bmatrix}
Z_1^T Z_1 & Z_1^T Z_2 & \cdots & Z_1^T Z_n \\
Z_2^T Z_1 & Z_2^T Z_2 & \cdots & Z_2^T Z_n \\
\vdots & \vdots & \ddots & \vdots \\
Z_n^T Z_1 & Z_n^T Z_2 & \cdots & Z_n^T Z_n
\end{bmatrix}
\]

\(K \) contains the dot products between all training examples.

– Similar to ‘Z’ in RBFs, but using dot product as “similarity” instead of distance.
Gram Matrix

- The matrix $\tilde{K} = \tilde{Z}Z^T$ has dot products between train and test examples:

$$\tilde{K} = \tilde{Z}Z^T = \begin{bmatrix} \tilde{z}_1 & \tilde{z}_2 & \cdots & \tilde{z}_n \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}$$

- Kernel function: $k(x_i, x_j) = z_i^Tz_j$.
 - Computes dot product between in basis $(z_i^T z_j)$ using original features x_i and x_j.
Kernel Trick

To apply linear regression, I only need to know K and \tilde{K}

Use x_i to form z_i

Use x_j to form z_j

Compute $z_i^T z_j$

$K = \begin{bmatrix} \end{bmatrix}$

Set $k_{ij} = z_i^T z_j$

Final result is $n \times n$ (no matter how large z_i is)
Kernel Trick

To apply linear regression, I only need to know K and \tilde{K}.

Use x_i to form z_i.

Use x_j to form z_j.

Compute $z_i^T z_j$.

Directly compute k_{ij} from x_i and x_j.

Set $k_{ij} = z_i^T z_j$.

Final result is $n \times n$ (no matter how large z_i is).
Linear Regression vs. Kernel Regression

Linear Regression

Training
1. Form basis \(Z \) from \(X \).
2. Compute \(w = (Z^T 2 + 2I)^{-1} (Z^T y) \)

Testing
1. Form basis \(\tilde{Z} \) from \(\tilde{X} \).
2. Compute \(\hat{y} = \tilde{Z} w \)

Kernel Regression

Training
1. Form inner products \(K \) from \(X \).
2. Compute \(v = (K + 2I)^{-1} y \)

Testing
1. Form inner products \(\tilde{K} \) from \(X \) and \(\tilde{X} \).
2. Compute \(\hat{y} = \tilde{K} v \)

(Everything you need to know about \(Z \) and \(\tilde{Z} \) is contained within \(K \) and \(\tilde{K} \))
Example: Degree-2 Kernel

- Consider two examples x_i and x_j for a 2-dimensional dataset:

 $$x_i = (x_{i1}, x_{i2}) \quad x_j = (x_{j1}, x_{j2})$$

- And consider a particular degree-2 basis:

 $$z_i = (x_{i1}^2 \sqrt{2} x_{i1} x_{i2} x_{i2}^2) \quad z_j = (x_{j1}^2 \sqrt{2} x_{j1} x_{j2} x_{j2}^2)$$

- We can compute inner product $z_i^T z_j$ without forming z_i and z_j:

 $$z_i^T z_j = x_{i1}^2 x_{j1}^2 + (\sqrt{2} x_{i1} x_{i2})(\sqrt{2} x_{j1} x_{j2}) + x_{i2}^2 x_{j2}^2$$

 $$= x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{i2} x_{j1} x_{j2} + x_{i2}^2 x_{j2}^2$$

 $$= (x_{i1} x_{j1} + x_{i2} x_{j2})^2 \quad \text{"completing the square"}$$

 $$= (x_i^T x_j)^2 \quad \text{No need for } z_i \text{ to compute } z_i^T z_j$$
Polynomial Kernel with Higher Degrees

• Let’s add a bias and linear terms to our degree-2 basis:
 \[
 z_i = \begin{bmatrix}
 1 & \sqrt{2}x_{i1} & \sqrt{2}x_{i2} & x_{i1}^2 & \sqrt{2}x_{i1}x_{i2} & x_{i2}^2
 \end{bmatrix}^T
 \]

• I can compute inner products using:
 \[
 (1 + x_i^T x_j)^2 = 1 + 2x_i^T x_j + (x_i^T x_j)^2
 \]
 \[
 = 1 + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} + x_{i1}^2x_{j1}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2} + x_{i2}^2x_{j2}^2
 \]
 \[
 = \begin{bmatrix}
 1 & \sqrt{2}x_{i1} & \sqrt{2}x_{i2} & x_{i1}^2 & \sqrt{2}x_{i1}x_{i2} & x_{i2}^2
 \end{bmatrix}^T
 \begin{bmatrix}
 1 \\
 \sqrt{2}x_{j1} \\
 \sqrt{2}x_{j2} \\
 x_{j1}^2 \\
 \sqrt{2}x_{j1}x_{j2} \\
 x_{j2}^2
 \end{bmatrix}
 = z_i^T z_j
Polynomial Kernel with Higher Degrees

• To get all degree-4 “monomials” I can use:

\[z_i^T z_j = (x_i^T x_j)^4 \]

Equivalent to using a \(z_i \) with weighted versions of \(x_i^4, x_i^3 x_{i2}, x_i^2 x_{i2}^2, x_{i2}^4, \ldots \)

• To also get lower-order terms use \(z_i^T z_j = (1 + x_i^T x_j)^4 \)

• The general degree-\(p \) polynomial kernel function:

\[k(x_i, x_j) = (1 + x_i^T x_j)^p \]

 – Works for any number of features ‘d’.
 – But cost of computing one \(z_i^T z_j \) is \(O(d) \) instead of \(O(d^p) \).
 – Take-home message: I can compute dot-products without the features.
Kernel Trick with Polynomials

- Using polynomial basis of degree ‘p’ with the kernel trick:
 - Compute K and $\mathbf{\tilde{K}}$ using:
 $$K_{ij} = (1 + x_i^\top x_j)^p$$
 $$\mathbf{\tilde{K}}_{ij} = (1 + \mathbf{\tilde{x}}_i^\top \mathbf{\tilde{x}}_j)^p$$
 - Make predictions using:
 $$\hat{y} = \mathbf{\tilde{K}} (\mathbf{K} + \lambda \mathbf{I})^{-1} y$$

- Training cost is only $O(n^2d + n^3)$, despite using $k=O(d^p)$ features.
 - We can form ‘K’ in $O(n^2d)$, and we need to “invert” an ‘n x n’ matrix.
 - Testing cost is only $O(ndt)$, cost to form $d\mathbf{\tilde{K}}$.
Gaussian-RBF Kernel

• Most common kernel is the Gaussian RBF kernel:

\[k(x_i, x_j) = \exp\left(-\frac{1}{2\sigma^2}||x_i - x_j||^2\right) \]

• Same formula and behaviour as RBF basis, but not equivalent:
 – Before we used RBFs as a basis, now we’re using them as inner-product.

• Basis \(z_i \) giving Gaussian RBF kernel is infinite-dimensional.
 – If \(d=1 \) and \(\sigma=1 \), it corresponds to using this basis (bonus slide):

\[z_j = \exp(-x_i^2) \left[1 \ \sqrt{\frac{2}{3}} x_i \ \sqrt{\frac{2^2}{3^2}} x_i^2 \ \sqrt{\frac{2^3}{3!}} x_i^3 \ \sqrt{\frac{2^4}{4!}} x_i^4 \ \cdots \right] \]
Motivation: Finding Gold

- Kernel methods first came from mining engineering ("Kriging"):
 - Mining company wants to find gold.
 - Drill holes, measure gold content.
 - Build a kernel regression model (typically use RBF kernels).
Kernel Trick for Non-Vector Data

• Consider data that doesn’t look like this:

\[
X = \begin{bmatrix}
0.5377 & 0.3188 & 3.5784 \\
1.8339 & -1.3077 & 2.7694 \\
-2.2588 & -0.4336 & -1.3499 \\
0.8622 & 0.3426 & 3.0349 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
+1 \\
-1 \\
-1 \\
+1 \\
\end{bmatrix},
\]

• But instead looks like this:

\[
X = \begin{bmatrix}
\text{Do you want to go for a drink sometime?} \\
\text{J'achète du pain tous les jours.} \\
\text{Fais ce que tu veux.} \\
\text{There are inner products between sentences?} \\
\end{bmatrix}, \quad y = \begin{bmatrix}
+1 \\
-1 \\
-1 \\
+1 \\
\end{bmatrix}.
\]

• Kernel trick lets us fit regression models without explicit features:
 – We can interpret \(k(x_i, x_j) \) as a “similarity” between objects \(x_i \) and \(x_j \).
 – We don’t need features if we can compute ‘similarity’ between objects.
 – There are “string kernels”, “image kernels”, “graph kernels”, and so on.
Valid Kernels

• What kernel functions $k(x_i,x_j)$ can we use?

• Kernel ‘k’ must be an inner product in some space:
 – There must exist a mapping from x_i to some z_i such that $k(x_i,x_j) = z_i^Tz_j$.

• It can be hard to show that a function satisfies this.
 – Infinite-dimensional eigenvalue equation.

• But like convex functions, there are some simple rules for constructing “valid” kernels from other valid kernels (bonus slide).
Kernel Trick for Other Methods

• Besides **L2-regularized least squares**, when can we use kernels?
 – We can compute **Euclidean distance with kernels**:

\[
||z_i - z_j||^2 = z_i^T z_i - 2 z_i^T z_j + z_j^T z_j = k(x_i, x_i) - 2 k(x_i, x_j) + k(x_j, x_j)
\]

 – All of our **distance-based methods** have kernel versions:
 • Kernel k-nearest neighbours.
 • Kernel clustering k-means (allows non-convex clusters)
 • Kernel density-based clustering.
 • Kernel hierarchical clustering.
 • Kernel distance-based outlier detection.
 • Kernel “Amazon Product Recommendation”.
Kernel Trick for Other Methods

• Besides **L2-regularized least squares**, when can we use kernels?
 – “Representer theorems” (bonus slide) have shown that any L2-regularized linear model can be kernelized:
 • L2-regularized robust regression.
 • L2-regularized brittle regression.
 • L2-regularized logistic regression.
 • L2-regularized hinge loss (SVMs).

With a particular implementation, can reduce prediction cost from \(O(ndl) \) to \(O(mdl) \).

Number of support vectors.
Logistic Regression with Kernels

Linear Logistic Regression

Kernel-Linear Logistic Regression

Kernel-Poly Logistic Regression

Kernel-RBF Logistic Regression
Summary

• **High-dimensional bases** allows us to separate non-separable data.

• **Kernel trick** allows us to use high-dimensional bases efficiently.
 – Write model to only depend on inner products between features vectors.
 \[\hat{y} = \hat{K}(K + \lambda I)^{-1}y \]

 – **Kernels** let us use similarity between objects, rather than features.
 – Allows some exponential- or infinite-sized feature sets.
 – Applies to L2-regularized linear models and distance-based models.

• Next time: how do we train on all of Gmail?
Why is inner product a similarity?

• It seems weird to think of the inner-product as a similarity.
• But consider this decomposition of squared Euclidean distance:

\[\frac{1}{2} \| x_i - x_j \|^2 = \frac{1}{2} \| x_i \|^2 - x_i^T x_j + \frac{1}{2} \| x_j \|^2 \]

• If all training examples have the same norm, then minimizing Euclidean distance is equivalent to maximizing inner product.
 – So “high similarity” according to inner product is like “small Euclidean distance”.
 – The only difference is that the inner product is biased by the norms of the training examples.
 – Some people explicitly normalize the \(x_i \) by setting \(x_i = (1/\| x_i \|) x_i \), so that inner products act like the negation of Euclidean distances.
Note that \hat{X} and Y are the same on the left and right side, so we only need to show that

$$(X^TX + \lambda I)^{-1}X^T = X^T(XX^T + \lambda I)^{-1}. \quad (1)$$

A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is

$$(E - FH^{-1}G)^{-1}FH^{-1} = E^{-1}F(H - GE^{-1}F)^{-1}.$$

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write the left side of (1) as

$$(X^TX + \lambda I)^{-1}X^T = (\lambda I + X^TX)^{-1}X^T = (\lambda I + X^TXI)^{-1}X^T = (\lambda I - X^T(-I)X)^{-1}X^T = -(\lambda I - X^T(-I)X)^{-1}X^T(-I)$$

Now apply the matrix inversion with $E = \lambda I$ (so $E^{-1} = (\frac{1}{\lambda}) I$), $F = X^T$, $H = -I$ (so $H^{-1} = -I$ too), and $G = X$:

$$-(\lambda I - X^T(-I)X)^{-1}X^T(-I) = -\left(\frac{1}{\lambda}\right)IX^T(-I - X\left(\frac{1}{\lambda}\right)X^T)^{-1}.$$

Now use that $(1/\alpha)A^{-1} = (\alpha A)^{-1}$, to push the $(-1/\lambda)$ inside the sum as $-\lambda$,

$$-\left(\frac{1}{\lambda}\right)IX^T(-I - X\left(\frac{1}{\lambda}\right)X^T)^{-1} = X^T(\lambda I + XX^T)^{-1} = X^T(XX^T + \lambda I)^{-1}.$$
Guasian-RBF Kernels

- The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

\[k(x_i, x_j) = \exp \left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right). \]

- What function \(\phi(x) \) would lead to this as the inner-product?
 - To simplify, assume \(d = 1 \) and \(\sigma = 1 \),

 \[k(x_i, x_j) = \exp(-x_i^2 + 2x_i x_j - x_j^2) \]

 \[= \exp(-x_i^2) \exp(2x_i x_j) \exp(-x_j^2), \]

 so we need \(\phi(x) = \exp(-x_i^2)z_i \) where \(z_i z_j = \exp(2x_i x_j) \).
 - For this to work for all \(x_i \) and \(x_j \), \(z_i \) must be infinite-dimensional.
 - If we use that

 \[\exp(2x_i x_j) = \sum_{k=0}^{\infty} \frac{2^k x_i^k x_j^k}{k!}, \]

 then we obtain

 \[\phi(x_i) = \exp(-x_i^2) \begin{bmatrix} 1 & \sqrt{\frac{2}{1!}} x_i & \sqrt{\frac{2^2}{2!}} x_i^2 & \sqrt{\frac{2^3}{3!}} x_i^3 & \cdots \end{bmatrix}. \]
Constructing Valid Kernels

- If $k_1(x_i, x_j)$ and $k_2(x_i, x_j)$ are valid kernels, then the following are valid kernels:
 - $k_1(\phi(x_i), \phi(x_j))$.
 - $\alpha k_1(x_i, x_j) + \beta k_2(x_i, x_j)$ for $\alpha \geq 0$ and $\beta \geq 0$.
 - $k_1(x_i, x_j)k_2(x_i, x_j)$.
 - $\phi(x_i)k_1(x_i, x_j)\phi(x_j)$.
 - $\exp(k_1(x_i, x_j))$.

- Example: Gaussian-RBF kernel:

$$k(x_i, x_j) = \exp \left(-\frac{\|x_i - x_j\|^2}{\sigma^2} \right)$$

$$= \exp \left(-\frac{\|x_i\|^2}{\sigma^2} \right) \exp \left(\frac{2}{\sigma^2} x_i^T x_j \right) \exp \left(-\frac{\|x_j\|^2}{\sigma^2} \right).$$
Representer Theorem

Consider linear model differentiable with losses f_i and L2-regularization,

$$\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} f_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2.$$

Setting the gradient equal to zero we get

$$0 = \sum_{i=1}^{n} f'_i(w^T x_i)x_i + \lambda w.$$

So any solution w^* can written as a linear combination of features x_i,

$$w^* = -\frac{1}{\lambda} \sum_{i=1}^{n} f'_i((w^*)^T x_i)x_i = \sum_{i=1}^{n} z_i x_i$$

$$= X^T z.$$

This is called a representer theorem (true under much more general conditions).
Representer Theorem

Using representer theorem we can use \(w = X^T z \) in original problem,

\[
\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} f_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2
\]

\[
= \arg\min_{z \in \mathbb{R}^n} \sum_{i=1}^{n} f_i(z^T x_i) + \frac{\lambda}{2} \|X^T z\|^2
\]

Now defining \(f(z) = \sum_{i=1}^{n} f_i(z_i) \) for a vector \(z \) we have

\[
= \arg\min_{z \in \mathbb{R}^n} f(X X^T z) + \frac{\lambda}{2} z^T X X^T z
\]

\[
= \arg\min_{z \in \mathbb{R}^n} f(K z) + \frac{\lambda}{2} z^T K z.
\]

Similarly, at test time we can use the \(n \) variables \(z \),

\[
\hat{X} w = \hat{X} X^T z = \hat{K} z.
\]