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Admin

• Assignment 3:

– Due Friday of next week.

• Midterm:

– Can view your exam during instructor office hours next week, 
or after class this/next week.



Last Time: Classification using Regression

• Binary classification using sign of linear models:

• Problems with existing errors:

– If yi = +1 and wTxi = +100, then squared error (wTxi – yi)
2 is huge.

– Hard to minimize training error (“0-1 loss”) in terms of ‘w’.

• Motivates convex approximations to 0-1 loss…



Degenerate Convex Approximation to 0-1 Loss

• If yi = +1, we get the label right if wTxi > 0.

• If yi = -1, we get the label right if wTxi < 0, or equivalently –wTxi > 0.

• So “classifying ‘i’ correctly” is equivalent to having yiw
Txi > 0.

• One possible convex approximation to 0-1 loss:

– Minimize how much this constraint is violated.



Degenerate Convex Approximation to 0-1 Loss

• Our convex approximation of the error for one example is:

• We could train by minimizing sum over all examples:

• But this has a degenerate solution:

– We have f(0) = 0, and this is the lowest possible value of ‘f’.

• There are two standard fixes: hinge loss and logistic loss.



Hinge Loss

• Consider replacing yiw
Txi > 0 with yiw

Txi ≥ 1.
(the “1” is arbitrary: we could make ||w|| bigger/smaller to use any positive constant)

• The violation of this constraint is now given by:

• This is the called hinge loss.

– It’s convex: max(constant,linear).

– It’s not degenerate: w=0 now gives an error of 1 instead of 0.



Hinge Loss: Convex Approximation to 0-1 Loss
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Hinge Loss

• Hinge loss for all ‘n’ training examples is given by:

– Convex upper bound on 0-1 loss.
• If the hinge loss is 18.3, then number of training errors is at most 18.

• So minimizing hinge loss indirectly tries to minimize training error.

• Finds a perfect linear classifier if one exists.

• Support vector machine (SVM) is hinge loss with L2-regularization.

• SVMs can also be viewed as “maximizing the margin” (later in lecture).



Logistic Loss

• We can smooth max in degenerate loss with log-sum-exp:

• Summing over all examples gives:

• This is the “logistic loss” and model is called “logistic regression”.
– It’s not degenerate: w=0 now gives an error of log(2) instead of 0.

– Convex and differentiable: minimize this with gradient descent.

– You should also add regularization.

– We’ll see later that it has a probabilistic interpretation.



Convex Approximations to 0-1 Loss



Logistic Regression and SVMs

• Logistic regression and SVMs are used EVERYWHERE!

– Fast training and testing.

• Training on huge datasets using “stochastic” gradient descent (next week).

• Testing is just computing wTxi.

– Weights wj are easy to understand. 

• It’s how much wj changes the prediction and in what direction.

– We can often get a good good test error.

• With low-dimensional features using RBF basis and regularization. 

• With high-dimensional features and regularization.

– Smoother predictions than random forests.



Comparison of “Black Box” Classifiers

• Fernandez-Delgado et al. [2014]:

– “Do we Need Hundreds of Classifiers to Solve Real World Classification 
Problems?”

• Compared 179 classifiers on 121 datasets.

• Random forests are most likely to be the best classifier.

• Next best class of methods was SVMs (L2-regularization, RBFs).



Last Time: Linear Classifiers

• 2D Visualization of linear regression for classification:

• “Linearly separable”: a perfect linear classifier exists.



Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Perceptron algorithm finds some classifier with zero error.

– But are all zero-error classifiers equally good?



Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.



Support Vector Machines

• For linearly-separable data, SVM minimizes:

– Subject to the constraints that:
(see Wikipedia/textbooks)

• But most data is not linearly separable.

• For non-separable data, try to minimize violation of constraints:



Support Vector Machines

• Try to maximizing margin and also minimizing constraint violation:

• We typically control margin/violation trade-off with parameter “λ”:

• This is the standard SVM formulation (L2-regularized hinge).
– Some formulations use λ = 1 and multiply hinge by ‘C’ (equivalent).



Support Vector Machines for Non-Separable

• Non-separable case:
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Support Vector Machines for Non-Separable

• Non-separable case:



Summary

• Hinge loss is a convex upper bound on 0-1 loss.

– SVMs add L2-regularization, can be viewed as “maximizing the margin”.

• Logistic loss is a smooth convex approximation to the 0-1 loss.

– “Logistic regression”.

• SVMs and logistic regression are very widely-used.

– A lot of ML consulting: “find good features, use L2-regularized logistic”.

– Both are just linear classifiers (a hyperplane dividing into two halfspaces).

• Next time:

– A trick that lets you find gold and use polynomial basis with d > 1.



Robustness and Convex Approximations

• Because the hinge/logistic grow like absolute value for mistakes, 
they tend not to be affected by a small number of outliers.



Robustness and Convex Approximations

• Because the hinge/logistic grow like absolute value for mistakes, 
they tend not to be affected by a small number of outliers.

• But performance degrades if we have many outliers.



Non-Convex 0-1 Approximations

• There exists some smooth non-convex 0-1 approximations.

– Robust to many/extreme outliers.

– Still NP-hard to minimize.

– But can use gradient descent.

• Finds “local” optimum.



“Robust” Logistic Regression

• A recent idea: add a “fudge factor” vi for each example.

• If wTxi gets the sign wrong, we can “correct” the mis-classification 
by modifying vi.

– This makes the training error lower but doesn’t directly help with test data, 
because we won’t have the vi for test data.

– But having the vi means the ‘w’ parameters don’t need to focus as much 
on outliers (they can make |vi| big if sign(wTxi) is very wrong).



“Robust” Logistic Regression

• A recent idea: add a “fudge factor” vi for each example.

• If wTxi gets the sign wrong, we can “correct” the mis-classification 
by modifying vi.

• A problem is that we can ignore the ‘w’ and get a tiny training error 
by just updating the vi variables.

• But we want most vi to be zero, so “robust logistic regression” puts 
an L1-regularizer on the vi values:

• You would probably also want to regularize the ‘w’ with different λ.


