CPSC 340:
Machine Learning and Data Mining

More Linear Classifiers
Fall 2017



Admin

* Assignment 3:
— Due Friday of next week.

e Midterm:

— Can view your exam during instructor office hours next week,
or after class this/next week.



Last Time: Classification using Regression

* Binary classification using sign of linear models:

Fit model Y, #w'x  ond predict using S"gf‘(WTYJ

—HJL\-I

* Problems with existing errors:
— If y. = +1 and w'x, = +100, then squared error (w'x, —y.)? is huge.
— Hard to minimize training error (“0-1 loss”) in terms of ‘w’.

* Motivates convex approximations to 0-1 loss...



Degenerate Convex Approximation to 0-1 Loss

If y. = +1, we get the label right if wx. > 0.
If y. = -1, we get the label right if w'x, < 0, or equivalently —w'x. > 0.
So “classifying ‘i’ correctly” is equivalent to having y.w'x. > 0.

One possible convex approximation to 0-1 loss:

— Minimize how much this constraint is violated.
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Degenerate Convex Approximation to 0-1 Loss

Our convex approximation of the error for one example is:
1
Maxi0 = yiw x§
We could train by minimizing sum over all examples:

¥ ) Zw\ax / Xz

But this has a degenerate solution:
— We have f(0) = 0, and this is the lowest possible value of ‘.

There are two standard fixes: hinge loss and logistic loss.



Hinge Loss

* Consider replacing yw'x. > 0 with yw'x. > 1.

(the “1” is arbitrary: we could make | |w| | bigger/smaller to use any positive constant)

* The violation of this constraint is now given by:
T
Mo x {07 | y,wyif

* This is the called hinge loss.
— It’s convex: max(constant,linear).
— It’s not degenerate: w=0 now gives an error of 1 instead of O.



Hinge Loss: Convex Approximation to O-1 Loss
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Hinge Loss: Convex Approximation to O-1 Loss
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Hinge Loss: Convex Approximation to O-1 Loss
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Hinge Loss

* Hinge loss for all ‘n’ training examples is given by:

n -
> - 1
{(W> Z YYW&YZO7 I )/: W XJ
j=h
— Convex upper bound on 0-1 loss.
* If the hinge loss is 18.3, then number of training errors is at most 18.

* So minimizing hinge loss indirectly tries to minimize training error.

* Finds a perfect linear classifier if one exists.

e Support vector machine (SVM) is hinge loss with L2-regularization.
n -
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 SVMs can also be viewed as “maximizing the margin” (later in lecture).



Logistic Loss

 We can smooth max in degenerate loss with log-sum-exp:
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e Summing over all examples gives: !
A T
£w) = Z la) (] + exp (= yiw x.)

* This is the “logistic loss” and model is called “logistic regression”.
— It’s not degenerate: w=0 now gives an error of log(2) instead of 0.
— Convex and differentiable: minimize this with gradient descent.
— You should also add regularization.
— We’ll see later that it has a probabilistic interpretation.



Convex Approximations to O-1 Loss
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Logistic Regression and SVMs

* Logistic regression and SVMs are used EVERYWHERE!

— Fast training and testing.
* Training on huge datasets using “stochastic” gradient descent (next week).
* Testing is just computing w'x..

— Weights w; are easy to understand.

* It's how much w; changes the prediction and in what direction.

— We can often get a good good test error.
* With low-dimensional features using RBF basis and regularization.
* With high-dimensional features and regularization.

— Smoother predictions than random forests.



Comparison of “Black Box” Classifiers

Fernandez-Delgado et al. [2014]:

— “Do we Need Hundreds of Classifiers to Solve Real World Classification
Problems?”

 Compared 179 classifiers on 121 datasets.

Random forests are most likely to be the best classifier.
Next best class of methods was SVMs (L2-regularization, RBFs).



Last Time: Linear Classifiers

e 2D Visualization of linear regression for/ classification:
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* “Linearly separable”: a perfect linear classifier exists.




Maximum-Margin Classifier

* Consider a linearly-separable dataset.
— Perceptron algorithm finds some classifier with zero error.
— But are all zero-error classifiers equally good?




Maximum-Margin Classifier

* Consider a linearly-separable dataset.

— Maximum-margin classifier: choose the farthest from both classes.

Pe,*FeC/’ clasriﬁt’r Wlﬂ\

\
Small "mot"g?r\‘




Maximum-Margin Classifier

* Consider a linearly-separable dataset.

— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.

— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.

— Maximum-margin classifier: choose the farthest from both classes.
174 "

\ Per'f\ec‘,' c,,ass‘!f/\’f' Wf”\ Max im(m (V\ar9in
\ U&L"rfj dutarce o closes? exmmlp/fs>
ik

Oo , Als? known @ a
/ 1
A X 6 Support vector maching
X X o
Xxxx 0 0o,
y X X 006 6 i 7‘16 BXopmfle) That are.
xx X X " 5 closet  gre Called
/] \
Su_mporf vecfa[;

) Xif



Maximum-Margin Classifier

* Consider a linearly-separable dataset.

— Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier

* Consider a linearly-separable dataset.
— Maximum-margin classifier: choose the farthest from both classes.
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Support Vector Machines

* For linearly-separable data, SVM minimizes:
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— Subject to the constraints that:
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* But most data is not linearly separable.
* For non-separable data, try to minimize violation of constraints:
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Support Vector Machines

* Try to maximizing margin and also minimizing constraint violation:
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* We typically control margin/violation trade-off with parameter “A”:
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* This is the standard SVM formulation (L2-regularized hinge).
— Some formulations use A = 1 and multiply hinge by ‘C’ (equivalent).




Support Vector Machines for Non-Separable

* Non-separable case:
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Support Vector Machines for Non-Separable

 Non-separable case:
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Support Vector Machines for Non-Separable

* Non-separable case: n _
f(w)r gmaxi(/) | - y.'W'x,-Z + 22. ])W“.?

Jiial

Lo%isfic re()ﬂ;slor\ Can
be viewed as smaagth X'Z
O(ploraximqfwﬂ Yo Sums, (

Bud,

‘(Surror" vecfors\l Wi”h
lagbfic loss.

no CO’\Cfrﬂt O‘F

v

Hinjc, loss )oenq/iee: O\Mouw‘f

Thety 5 2] is vialled
\ Xil




Support Vector Machines for Non-Separable

£'lw) = ém«xf(/, + %))w“z

 Non-separable case:
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Summary

Hinge loss is a convex upper bound on 0-1 loss.
— SVMs add L2-regularization, can be viewed as “maximizing the margin”.

Logistic loss is a smooth convex approximation to the 0-1 loss.
— “Logistic regression”.
SVMs and logistic regression are very widely-used.

— A lot of ML consulting: “find good features, use L2-regularized logistic”.
— Both are just linear classifiers (a hyperplane dividing into two halfspaces).

Next time:
— A trick that lets you find gold and use polynomial basis with d > 1.



Robustness and Convex Approximations

* Because the hinge/logistic grow like absolute value for mistakes,
they tend not to be affected by a small number of outliers.
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Robustness and Convex Approximations

* Because the hinge/logistic grow like absolute value for mistakes,
they tend not to be affected by a small number of outliers.

* But performance degrades if we have many ou)‘c(f(ers.



Non-Convex 0-1 Approximations

* There exists some smooth non-convex 0-1 approximations.

— Robust to many/extreme outliers.

— Still NP-hard to minimize.
— But can use gradient descent.

* Finds “local” optimum.
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“Robust” Logistic Regression

* Arecentidea: add a ”fudge factor” v, for each example.
-F w, v) = 2 'oc) (14 exP( y,vx, +V))
* If wix; gets the sign wrong, we can “correct” the mis-classification
by modlfymg V..
— This makes the training error lower but doesn’t directly help with test data,
because we won’t have the v, for test data.

— But having the v, means the ‘w’ parameters don’t need to focus as much
on outliers (they can make |v.| big if sign(w'x;) is very wrong).



“Robust” Logistic Regression

A recent idea: add a ”fudge factor” v, for each example.
-F w, v) = 2 'oc) (14 exP( y,vx, +V))

If wix. gets the sign wrong, we can “correct” the mis-classification
by modlfymg V..

A problem is that we can ighore the ‘w’ and get a tiny training error
by just updating the v, variables.

But we want most v, to be zero, so “robust logistic regression” puts
I
an L1-regularizer on the v, values:

-F(w)v7 = ’_ﬁ 'oc) (14 exP(~—y,- v7x,- +V,-)) + ﬂ)’vll,
You would probably also want to regularize the ‘w’ with different A.



