CPSC 340: Machine Learning and Data Mining

More Linear Classifiers Fall 2017

Admin

- Assignment 3:
 - Due Friday of next week.
- Midterm:
 - Can view your exam during instructor office hours next week, or after class this/next week.

Last Time: Classification using Regression

• Binary classification using sign of linear models:

Fit model
$$y_i \approx w^T x_i$$
 and predict using sign($w^T x_i$)
+ $i = -1$

- Problems with existing errors:
 - If $y_i = +1$ and $w^T x_i = +100$, then squared error $(w^T x_i y_i)^2$ is huge.
 - Hard to minimize training error ("0-1 loss") in terms of 'w'.
- Motivates convex approximations to 0-1 loss...

Degenerate Convex Approximation to 0-1 Loss

- If $y_i = +1$, we get the label right if $w^T x_i > 0$.
- If $y_i = -1$, we get the label right if $w^T x_i < 0$, or equivalently $-w^T x_i > 0$.
- So "classifying 'i' correctly" is equivalent to having $y_i w^T x_i > 0$.
- One possible convex approximation to 0-1 loss:
 - Minimize how much this constraint is violated.

Degenerate Convex Approximation to 0-1 Loss

• Our convex approximation of the error for one example is:

 $\max\{0, -\gamma; w^T x_i\}$

- We could train by minimizing sum over all examples: $f(w) = \sum_{i=1}^{n} \max\{O_{i} - \gamma_{i} w^{T} x_{i}\}$
- But this has a degenerate solution:

- We have f(0) = 0, and this is the lowest possible value of 'f'.

• There are two standard fixes: hinge loss and logistic loss.

Hinge Loss

• Consider replacing $y_i w^T x_i > 0$ with $y_i w^T x_i \ge 1$.

(the "1" is arbitrary: we could make ||w|| bigger/smaller to use any positive constant)

• The violation of this constraint is now given by:

$$\max \{O_{y_i} \mid -y_i \mid x_i\}$$

- This is the called hinge loss.
 - It's convex: max(constant,linear).
 - It's not degenerate: w=0 now gives an error of 1 instead of 0.

Hinge Loss: Convex Approximation to 0-1 Loss "Error" or "loss" for predicting wixi when true label yi is -1. $(w^7 x_i - y_i)^2$.What we want is the "O-1 loss". Prediction W^TXi We receive a high error 0 for getting sign(wix;) "too right"

7

Hinge Loss: Convex Approximation to 0-1 Loss "Error" or "loss" for predicting wixi when true label yi is -1. Let's choose a loss function that: "hinge" loss What we want is the "O-1 loss". I. Has error of O if $w^T x_i \leq -1$ (no "bad" errors beyond this point) 2. Has a loss of 1 if $w^7x_i = 0$ (matches 0-1 loss at decision boundary) Prediction w'Xi 3. Is convex and "close" to 0-1 loss.

Hinge Loss

• Hinge loss for all 'n' training examples is given by:

$$f(w) = \sum_{j=1}^{n} \max \{0, 1 - y_i w^T x_i\}$$

- Convex upper bound on 0-1 loss.
 - If the hinge loss is 18.3, then number of training errors is at most 18.
 - So minimizing hinge loss indirectly tries to minimize training error.
 - Finds a perfect linear classifier if one exists.
- Support vector machine (SVM) is hinge loss with L2-regularization.

$$f(w) = \sum_{i=1}^{n} \max \{20, 1-y_i \ w^T x_i \} + \frac{\pi}{2} ||w||^2$$

• SVMs can also be viewed as "maximizing the margin" (later in lecture).

Logistic Loss

• We can smooth max in degenerate loss with log-sum-exp:

$$\max\{0, -\gamma; w^{T}x; \} \approx \log(\exp(0) + \exp(-\gamma; w^{T}x;))$$

Summing over all examples gives:

$$f(n) = \sum_{i=1}^{n} log(1 + exp(-y_iw^7x_i))$$

- This is the "logistic loss" and model is called "logistic regression".
 - It's not degenerate: w=0 now gives an error of log(2) instead of 0.
 - Convex and differentiable: minimize this with gradient descent.
 - You should also add regularization.
 - We'll see later that it has a probabilistic interpretation.

Logistic Regression and SVMs

- Logistic regression and SVMs are used EVERYWHERE!
 - Fast training and testing.
 - Training on huge datasets using "stochastic" gradient descent (next week).
 - Testing is just computing w^Tx_i.
 - Weights w_i are easy to understand.
 - It's how much w_i changes the prediction and in what direction.
 - We can often get a good good test error.
 - With low-dimensional features using RBF basis and regularization.
 - With high-dimensional features and regularization.
 - Smoother predictions than random forests.

Comparison of "Black Box" Classifiers

- Fernandez-Delgado et al. [2014]:
 - "Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?"

- Compared 179 classifiers on 121 datasets.
- Random forests are most likely to be the best classifier.
- Next best class of methods was SVMs (L2-regularization, RBFs).

Last Time: Linear Classifiers

• 2D Visualization of linear regression for classification:

• "Linearly separable": a perfect linear classifier exists.

- Consider a linearly-separable dataset.
 - Perceptron algorithm finds *some* classifier with zero error.
 - But are all zero-error classifiers equally good?

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

Support Vector Machines

• For linearly-separable data, SVM minimizes:

$$f(w) = \frac{1}{2} ||w||^2 \quad (equivalent to maximizing margin \frac{1}{1/w}|)$$

$$- \text{Subject to the constraints that:} \quad w^7 x_i \geqslant 1 \quad \text{for } y_i = 1 \quad (c \text{ lassify all } y_i)$$

$$(see Wikipedia/textbooks) \quad w^7 x_i \leqslant -1 \quad \text{for } y_i = -1 \quad (e \text{ xamples correctly})$$

- But most data is not linearly separable.
- For non-separable data, try to minimize violation of constraints: $\int f w^{T}x_{i} \leq -1$ and $y_{i} = -1$ then "violation" should be zero. If $w^{T}x_{i} \gtrsim -1$ and $y_{i} = -1$ then we "violate constraint" by $1 + w^{T}x_{i}$ Constraint violation is the <u>hinge loss</u>.

Support Vector Machines

• Try to maximizing margin and also minimizing constraint violation:

Hinge loss
$$f(w) = \sum_{i=1}^{n} \max \{0, 1 - y_i w^T x_i\} + \frac{1}{2} ||w||^2$$

for example 'i': $\int encourages |arge encourages |arge encourages |arge margin.$

• We typically control margin/violation trade-off with parameter " λ ":

$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i w^T x_i\} + \frac{\lambda}{2} ||w||^2$$

- This is the standard SVM formulation (L2-regularized hinge).
 - Some formulations use $\lambda = 1$ and multiply hinge by 'C' (equivalent).

• Non-separable case:

• Non-separable case:

Summary

- Hinge loss is a convex upper bound on 0-1 loss.
 - SVMs add L2-regularization, can be viewed as "maximizing the margin".
- Logistic loss is a smooth convex approximation to the 0-1 loss.
 "Logistic regression".
- SVMs and logistic regression are very widely-used.
 - A lot of ML consulting: "find good features, use L2-regularized logistic".
 - Both are just linear classifiers (a hyperplane dividing into two halfspaces).
- Next time:
 - A trick that lets you find gold and use polynomial basis with d > 1.

Robustness and Convex Approximations

• Because the hinge/logistic grow like absolute value for mistakes, they tend not to be affected by a small number of outliers.

Robustness and Convex Approximations

• Because the hinge/logistic grow like absolute value for mistakes, they tend not to be affected by a small number of outliers.

But performance degrades if we have many outliers.

Non-Convex 0-1 Approximations

• There exists some smooth non-convex 0-1 approximations.

"Robust" Logistic Regression

• A recent idea: add a "fudge factor" v_i for each example.

$$f(w,v) = \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i + v_i))$$

- If w^Tx_i gets the sign wrong, we can "correct" the mis-classification by modifying v_i.
 - This makes the training error lower but doesn't directly help with test data, because we won't have the v_i for test data.
 - But having the v_i means the 'w' parameters don't need to focus as much on outliers (they can make $|v_i|$ big if sign($w^T x_i$) is very wrong).

"Robust" Logistic Regression

• A recent idea: add a "fudge factor" v_i for each example.

$$f(w,v) = \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i + v_i))$$

- If w^Tx_i gets the sign wrong, we can "correct" the mis-classification by modifying v_i.
- A problem is that we can ignore the 'w' and get a tiny training error by just updating the v_i variables.
- But we want most v_i to be zero, so "robust logistic regression" puts an L1-regularizer on the v_i values:

$$f(w,v) = \sum_{i=1}^{n} \log (1 + exp(-y_i w^T x_i + v_i)) + \lambda \|v\|_1$$

• You would probably also want to regularize the 'w' with different λ .