CPSC 340:
Machine Learning and Data Mining

Linear Classifiers
Fall 2017

Admin

Assignment O+1:
— Looked into remaining grade anomalies.

Assignment O+1:
— Grades posted.

Assignment 3:
— Due Friday of next week (shorter, sorry about A2 length + midterm date).

Midterm:

— Can view your exam during instructor office hours next week,
or after class this/next week.

Last Time: L1-Regularization

* We discussed L1-regularization:

F)= L= 112+ Al

— Also known as “LASSO” and “basis pursuit denoising”.
— Regularizes ‘w’ so we decrease our test error (like L2-regularization).
— Yields sparse ‘W’ so it selects features (like LO-regularization).

* Properties:
— It’s convex and fast to minimize (with “proximal-gradient” methods).

— Solution is not unique (sometimes people do L2- and L1-regularization).
— Usually includes “correct” variables but tends to yield false positives.

Ensemble Feature Selection

* |n this case of L1-regularization, we want to reduce false positives.

— Unlike LO-regularization, the non-zero w; are still “shrunk”.

* “Irrelevant” variables are included, before “relevant” W reach best value.

e We can also use ensemble methods for feature selection.

— Usually designed to reduce false positives or reduce false negatives.

* A bootstrap approach to reducing false positives:
— Apply the method to bootstrap samples of the training data.
— Only take the features selected in all bootstrap samples.

Ensemble Feature Selection
- feafuc stlech- 3 Sz {/) 2, 3)77 7}2 \
i3

X‘ o
TN,
\)Xm _ 5 Fog [slechr o Syf %2)3)5_) 7) fj /

/Y/ \/Y\/
O Ran Tentare selech Tt wection
S o lt!). on @ach Sample i
[— f O{ selec f«ecl ?947(0”5«

 Example: boostrapping plus L1-regularization (“BoLASSO”).
— Reduces false positives.
— It’s possible to show it recovers “correct” variables with weaker conditions.

Part 3 Key Ideas: Linear Models, Least Squares

e Focus of Part 3 is linear models:

— Supervised learning where prediction is linear combination of features:
\/i = W' X“ +Wlxil + .. +WAKiJ

. = w'y
* Regression:

— Target y, is numerical, testing (V. == y.) doesn’t make sense.
M
(

&ooJ f* n‘ﬂ+ Jooﬂ‘ i
° . n '
Squared error: -}_Z (Jy; - \/;)l o _}z H)(w"\///l

@xactly pass ﬂfow)k qey PO

— Can find optimal ‘w’ by solving “normal equations”.

Part 3 Key Ideas: Gradient Descent, Error Functions

* For large ‘d’ we often use gradient descent:
— lterations only cost O(nd).
— Converges to a critical point of a smooth function.
— For convex functions, it finds a global optimum.

* L,-norm and L_-norm errors:

H)(w"y”. ”yw‘yl/oo

— More/less robust to outliers.
— Can apply gradient descent after smoothing with Huber or log-sum-exp.

Part 3 Key Ideas: Change of basis, Complexity Scores

* Change of basis: replaces features x, with non-linear transforms z;:
— Add a bias variable (feature that is always one).
— Polynomial basis.
— Radial basis functions (non-parametric basis).

* We discussed scores for choosing “true” model complexity.
— Validation score vs. AIC/BIC.

e Search and score for feature selection:

— Define a “score” like BIC, and do a “search” like forward selection.

Part 3 Key Ideas: Regularization

e LO-regularization (AIC, BIC):
— Adds penalty on the number of non-zeros to select features.
()= 0=yl + Aol
e |L2-regularization (ridge regression):
— Adding penalty on the L2-norm of ‘W’ to decrease overfitting:

Flo)y= 1w =yl*+ 2y

e L1-regularization (LASSO):
— Adding penalty on the L1-norm decreases overfitting and selects features:

Fl) = 0=yl + A0

Key Idea in Rest of Part 3

* The next few lectures will focus on:
— Using linear models for classification and with discrete features.
— Using linear models with really big datasets.
— Connections between regression and probabilities.

* It may seem like we’re spending a lot of time on linear models.
— Linear models are used a lot and are understandable.
* ICBC only uses linear models for insurance estimates.

— Linear models are also the building blocks for more-advanced methods.

e “Latent-factor” models in Part 4 and “deep learning” in Part 5.

(pause)

Motivation: Identifying Important E-mails

* How can we automatically identify ‘important’ e-mails?

| » Mark .. Issam, Ricky (10) inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) ists Intro to Computer Science 10:20 am
Inbox (3) N
» Issam Laradji inbox Convergence rates forcu = 9:49 am
Starred
<!mpor§nt > * sameh, Mark, sameh (3) Inbox Graduation ProjectDema = 8:01 am
Sent Mai - :
g » Mark .. sara, Sara (11) Label propagation = 7:57am

* A binary classification problem (“important” vs. “not important”).

— Labels are approximated by whether you took an “action” based on mail.
— High-dimensional feature set (that we’ll discuss later).

* Gmail uses regression for this binary classification problem.

Binary Classification Using Regression?

* Can we apply linear models for binary classification?

— Set y, = +1 for one class (“important”).

— Set y, = -1 for the other class (“not important”).
e At training time, fit a linear regression model:

)/' = W, X,, twy Xyt 00wy xy
—_ W yl
* The model will try to make w'x. = +1 for “important” e-mails,
and w'x. = -1 for “not important” e-mails.

Binary Classification Using Regression?

* Can we apply linear models for binary classification?
— Set y, = +1 for one class (“important”).
— Set y, = -1 for the other class (“not important”).

* Linear model gives real numbers like 0.9, -1.1, and so on.

* So to predict, we look at the sign of w'x..
— If wix. = 0.9, predict y, = +1.
— If wix. =-1.1, predict y. = -1.
— If wix. = 0.1, predict y, = +1.
— If wix. =-100, predict y, = -1.

Decision Boundary in 1D

\”’

X

¥ X ¥ ¥ x ¥ et

Z\/
')neqr' r (7Nssim

nﬂoxe,
N 1
Yim WX

i»’)or‘/au'{

\

Decision Boundary in 1D

y
/O(Ar U"Dreah'(,'/‘| ‘rmn(;f;an

Z\/
')neqr‘ r (t’NSSl(I/)

nnoJe‘
N 1
Yim WX
 We can interpret ‘w’ as hyperplane separating x into 2 half-spaces:

— Half-space where w'x, > 0 and half-space where w'x. < 0.

'l}m‘)or+¢“1 '

Decision Boundary in 2D

decision tree

KNN

linear classifier

* Alinear classifier would be linear function y.= B + w x,;+W,X,,
coming out of the page (the boundary is at y.=0).

® class +1

® X class -1
® class +1

e Or recall from multivariable calculus that a plane in d-dimensions is
defined by its normal vector in d-dimensions, plus an intercept/offset.

17

Perceptron Algorithm

One of the first “learning” algorithms was the “perceptron” (1957).
— Searches for a ‘w’ such that sign(w'x,) = y. for all i.

Perceptron algorithm:
— Start with w® = 0.

— Go through examples in any order until you make a mistake predicting y..
* Setw'l=w!+yx.
— Keep going through examples until you make no errors on training data.

Intuition for step: ify, = +1, ”add more of x. to w” so that w'x; is Iarger
('(’-H)_fxl = (\/Vt + Xl X{ Q/Vt) X + Xi yl = (old f'”"l'd M) + qu

If a perfect classifier exists, this algorithm finds one in finite number of steps.

— In this case we say the training data is “linearly separable”

https://en.wikipedia.org/wiki/Perceptron

History [edit]

- - -

= -
. ¥ =3 =3 =

The Mark | Perceptron machine was &J
the first implementation of the
perceptron algorithm. The machine was
connected to a camera that used
20x20 cadmium sulfide photocells to
produce a 400-pixel image. The main
visible feature is a patchboard that
allowed experimentation with different
combinations of input features. To the
right of that are arrays of
potentiometers that implemented the
adaptive weights.#?"?

Zi 7(:)(1'2 o5’)%7

Can we just use least squares??

Consider training by minimizing squared error with these y::

{7 L Xy I* ’jj]

U' -1
~+|

~ |

f we predict w'x, = +0.9 and y, = +1, error is small: (0.9 — 1)? = 0.01.
f we predict w'x, =-0.8 and y, = +1, error is big: (-0.8 — 1)? = 3.24.
f we predict w'x. = +100 and y, = +1, error is huge: (100 — 1)? = 9801.

Least squares penalized for being “too right”.
— 4100 has the right sign, so the error should be zero.

Can we just use least squares??

* Least squares behaves weirdly when applied to classification:

Thl) s 'Hr\e Iir\enr y(c,rlfsioy\ Mot'lcl we \A/m’ﬂ‘

[/ (a rerrec" c‘assifier)

(I\of ’?M’“) + ,‘11;(»\
Htime we
O_

Sce "vicodin"

(Sram) ~ [XX X X x x X X X X x ¥

 Make sure you understand why the green line achieves O training error.

Can we just use least squares??

* What went wrong?

— “Good” errors vs. “bad” errors.

This ‘s the Iinenr— r(qﬂssiw\ model we Wanl

[/ (a rerrec" classiﬁer)

\ , l -ﬁ ﬁmo wée
l l{ 1 Sce ”v'lw:"mn
| Ay
So— (77 A
300 errors: ‘iv } "
model\ s lacimj Boad ™ errors: model

’)ey\m,iz -For 're(h(");\, S beilﬂ? ff’l‘d’ilf’c‘ ‘F}(
wrov&) C(“SS\ ‘:{iel\('/‘vﬂ COl’f((J c/aff,

Can we just use least squares??

N
- 2
* What went wrong? -V(w>:2 (w'x ‘)'1)
— “Good” errors vs. “bad” errors. - L l
KT‘M) (S 'H\e INEar rtqr‘i-‘Sw\ MOA ’ we Warﬂ‘ W‘\il ;\'a rwc/nf
- on
(a rer‘Fec'* Cla’sn‘rltf) 7' < : -/000?
(r\of ’eqm>+ ,
Htme we
O Sce "vicodin®
(Sram) - [4= £ x x X X X X x ¥ "g J“ errors of
| \ \ TAc _ﬁﬁ.{éd
’meur (,/ass:'féf
are HOGE .

Comparing Loss Functions

"foo rig ht"

"Eecor' or "loss' for ffédléf)n,’ w7x,‘

[— when true |abel \/; s =/

Prediclion

.

15—
y=

w

”LGJ“ ¢rroc’ \Jou Should r__o_f
penalize for ruﬂiny WTxi heye.

WTX i

N _

0

)} \ . T
9000' error: qu'n’ W’Yi here s éa_gl

Thoughts on the previous (and next) slide

* We are now plotting the loss vs. the predicted w'x..
— This is totally different from plotting in the data space (y, vs. x,).

* The loss is a sum over training examples.
— We're plotting the individual loss for a particular training example.

— In the figure, this example has label y, = -1 so the loss is centered at -1.
(The plot would be mirrored in the case of y,= +1.)
* We only need to show one case or the other to get our point across.
— Note that with regular linear regression the output y, could be any number

and thus the parabola could be centred anywhere. But here we've
restricted ourselves to y={-1,+1}.

* (The next slide is the same as the previous one)

Comparing Loss Functions

"foo rig ht"

"Eecor' or "loss' for ffédléf)n,’ w7x,‘

[— when true |abel \/; s =/

Prediclion

.

15—
y=

w

”LGJ“ ¢rroc’ \Jou Should r__o_f
penalize for ruﬂiny WTxi heye.

WTX i

N _

0

)} \ . T
9000' error: qu'n’ W’Yi here s éa_gl

Comparing Loss Functions

"foo rig ht"

"Eecor' or "loss' for ffédléf)n,’ w7x,‘

o when f7} |abe Vi i —[

Prediclion
i- — ~ WTXi
) Jk .

w

”LGJ“ ¢rroc’ \Jou Should r__o_f
penalize for ruﬂiny WTxi heye.

—~—~

0

)} \ . T
9000' error: qu'n’ W’Yi here s éa_gl

Comparing Loss Functions

"Eecor' or "loss' for freolkd;m] w7x,‘

(w-,x.'"yol 2 when trye |abel Vi s —|.
@/h) ‘)er\a”\/
FOF b"""f) What we \/__/gﬂj 1S

" :]
foo r:glff (‘h\o //0" /osst\
V Prediclion

7'_-1 WTXi
R NG J
| Ve My - o
”LGJ“ error y(m should Y_Loj O 900 evrror: 1"0\\/:07 w X here IS éa_fl
penalize for ruﬂin, wai heve.

28

0-1 Loss Function

 The 0-1 loss function is the number of classification errors:
— We can write using the LO-norm as | | sign(Xw) —y/| |,.
— Unlike regression, in classification it’s reasonable that sign(w'x.) = y..

* Unfortunately the 0-1 loss is non-convex in ‘w’.

— It’s easy to minimize if a perfect classifier exists (perceptron).
— Otherwise, finding the ‘w’ minimizing 0-1 loss is a hard problem.

— Gradient is zero everywhere so you don’t know “which way to go” in w-space.

— Note this is NOT the same type of problem we had with using the squared loss.
* We can minimize the squared error, but it might giver a bad model for classification.

* Next lecture we’ll introduce convex approximations to the 0-1 loss.

29

Summary

Ensemble feature selection reduces false positives or negatives.

Binary classification using regression:

— Encode using y. in {-1,1}.

— Use sign(w'x.) as prediction.

— “Linear classifier” (a hyperplane splitting the space in half).
Perceptron algorithm: finds a perfect classifier (if one exists).
Least squares is a weird error for classification.

0-1 loss is the ideal loss, but is non-smooth and non-convex.

Next time: one of the best “out of the box” classifiers.

L1-Regularization as a Feature Selection Method

* Advantages:
— Deals with conditional independence (if linear).

— Sort of deals with collinearity:
e Picks at least one of “mom” and “mom?2”.

— Very fast with specialized algorithms.
* Disadvantages:
— Tends to give false positives (selects too many variables).

* Neither good nor bad:
— Does not take small effects.
— Says “gender” is relevant if we know “baby”.

— Good for prediction if we want fast training and don’t care about having
some irrelevant variables included.

“Elastic Net”: L2- and L1-Regularization

* To address non-uniqueness, some authors use L2- and L1-:

() ={ =yl + D 1P + 3)

-2
2

e Called “elastic net” regularization.
— Solution is sparse and unique.
— Slightly better with feature dependence:

e Selects both “mom” and “mom?2”.

* Optimization is easier though still non-differentiable.

L1-Regularization Debiasing and Filtering

 To remove false positives, some authors add a debiasing step:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.
— Re-fit relevant ‘w’ using least squares or L2-regularized least squares.

* Arelated use of L1-regularization is as a filtering method:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.
— Run standard (slow) variable selection restricted to relevant variables.

* Forward selection, exhaustive search, stochastic local search, etc.

Non-Convex Regularizers

Regularizing |w;| 2 selects all features.
Regularizing |wj| selects fewer, but still has many false positives.
What if we regularize |w;|*? instead? 2

Minimizing this objective would lead to fewer false positives.
— Less need for debiasing, but it’s not convex and hard to minimize.

There are many non-convex regularizers with similar properties.
— L1-regularization is (basically) the “most sparse” convex regularizer.

Online Classification with Perceptron

e Perceptron for online linear binary classification [Rosenblatt, 1957]
— Start with w, = 0.
— At time ‘t” we receive features x.
— We predict y, = sign(w,'x,).
— Ify, 2y, thensetw, , = w, +y.Xx..
* Otherwise, set w,,, = w,.

(Slides are old so above I’'m using subscripts of ‘t” instead of superscripts.)

e Perceptron mistake bound [Novikoff, 1962]:
— Assume data is linearly-separable with a “margin”: .
* There exists w* with | |w*| |=1 such that sign(x,"'w*) = sign(y,) for all ‘t” and |x'w*| 2 V?O
— Then the number of total mistakes is bounded.
* No requirement that data is IID.

Perceptron Mistake Bound

* Let’s normalize each x, so that | |x,| | = 1.
— Length doesn’t change label.

* Whenever we make a mistake, we have sign(y,) # sign(w,'x,) and
lwes ||* = [lwe + yae®

lwe||* + 2gtwfa:t +1

<0
< Jlwe||* +1
< ’wt—1|2+2
< 'wt_2|2+3.

* So after ‘k’ errors we have | |w,| |2 < k.

Perceptron Mistake Bound

* Let’s consider a solution w*, so sign(y,) = sign(x,'w*).

e Whenever we make a mistake, we have:
[witr || = [[wegea || [lws |
> w;ﬂlw*
= (wt + yeze) " wy
= wgw;k + yta?fw*
= wgw* + \mtTw*\
> /wg’w;k + .

* So after k" mistakes we have | |w,|| > yk.

Perceptron Mistake Bound

* So our two bounds are | |w,|| <sqgrt(k) and | |w,| | = yk.

* This gives yk < sqrt(k), or a maximum of 1/y? mistakes.
— Note that y > 0 by assumption and is upper-bounded by one by | |x]| | < 1.

— After this ‘k’, under our assumptions
we’re guaranteed to have a perfect classifier.

