CPSC 340: Machine Learning and Data Mining

More Regularization Fall 2017

Admin

Assignment 3:

Out soon, due Friday of next week.

• Midterm:

- You can view your exam during instructor office hours or after class Friday.
 - But no instructor office hours this week (Mark is away).

Last Time: L2-Regularization

- We discussed regularization:
 - Adding a continuous penalty on the model complexity:

$$f(w) = \frac{1}{2} || \chi_w - \gamma ||^2 + \frac{3}{2} ||w||^2$$

- Best parameter λ almost always leads to improved test error.
 - L2-regularized least squares is also known as "ridge regression".
 - Can be solved as a linear system like least squares.
- Numerous other benefits:
 - Solution is unique, less sensitive to data, gradient descent converges faster.

Features with Different Scales

Consider continuous features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It doesn't matter for decision trees or naïve Bayes.
 - They only look at one feature at a time.
 - It doesn't matter for least squares:
 - $w_i^*(100 \text{ mL})$ gives the same model as $w_i^*(0.1 \text{ L})$ with a different w_i .

Features with Different Scales

Consider continuous features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It matters for k-nearest neighbours:
 - "Distance" will be affected more by large features than small features.
 - It matters for regularized least squares:
 - Penalizing (w_i)² means different things if features 'j' are on different scales.

Standardizing Features

X= average of

- It is common to standardize continuous features:
 - For each feature:
 - 1. Compute mean and standard deviation:

iation:
$$M_{ij} = \frac{1}{n} \sum_{i=1}^{n} X_{ij}$$
 $O_{j} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - u_{j})^{2}}$

2. Subtract mean and divide by standard deviation ("z-score")

Replace
$$X_{ij}$$
 with $\frac{X_{ij} - M_{ij}}{o_i}$

- Now changes in 'w_i' have similar effect for any feature 'j'.
- How should we standardize test data?
 - Wrong approach: use mean and standard deviation of test data.
 - Training and test mean and standard deviation might be very different.
 - Right approach: use mean and standard deviation of training data.

Standardizing Features

X= ()

- It is common to standardize continuous features:
 - For each feature:

 - 2. Subtract mean and divide by standard deviation ("z-score")

Replace
$$X_{ij}$$
 with $\frac{X_{ij} - M_{ij}}{O_{ij}}$

- Now changes in 'w_i' have similar effect for any feature 'j'.
- If we're doing 10-fold cross-validation:
 - Compute the μ_j and σ_j based on the 9 training folds.
 - Standardize the remaining ("validation") fold with this "training" μ_j and σ_j .
 - Re-standardize for different folds.

Standardizing Target

- In regression, we sometimes standardize the targets y_i.
 - Puts targets on the same standard scale as standardized features:

Replace y; with
$$\frac{y_i - u_y}{\sigma_y}$$

- With standardized target, setting w = 0 predicts average y_i:
 - High regularization makes us predict closer to the average value.
- Again, make sure you standardize test data with the training stats.
- Other common transformations of y_i are logarithm/exponent:

Use
$$log(y_i)$$
 or $exp(\Upsilon y_i)$

Makes sense for geometric/exponential processes.

Regularizing the Y-Intercept?

Should we regularize the y-intercept?

- No! Why encourage it to be closer to zero (it could be anywhere)?
 - You should be allowed to shift function up/down globally.
- Yes! It makes the solution unique and it easier to compute 'w'.
- Compromise: regularize by a smaller amount than other variables.

$$f(w) = \frac{1}{2} \| \chi_w - \chi \|^2 + \frac{1}{2} \frac{1}{2} \chi_w^2$$
 Make $1, \frac{1}{2} \frac{1}{$

(pause)

Parametric vs. Non-Parametric Transforms

We've been using linear models with polynomial bases:

$$y_i = w_0 + w_1 + w_2 + w_3 + w_4$$

- But polynomials are not the only possible bases:
 - Exponentials, logarithms, trigonometric functions, etc.
 - The right basis will vastly improve performance.
 - If we use the wrong basis, our accuracy is limited even with lots of data.
 - But the right basis may not be obvious.

Parametric vs. Non-Parametric Transforms

We've been using linear models with polynomial bases:

$$y_i = w_0 + w_1 + w_2 + w_3 + w_4$$

- Alternative is non-parametric bases:
 - Size of basis (number of features) grows with 'n'.
 - Model gets more complicated as you get more data.
 - Can model complicated functions where you don't know the right basis.
 - With enough data.
 - Classic example is "Gaussian RBFs".

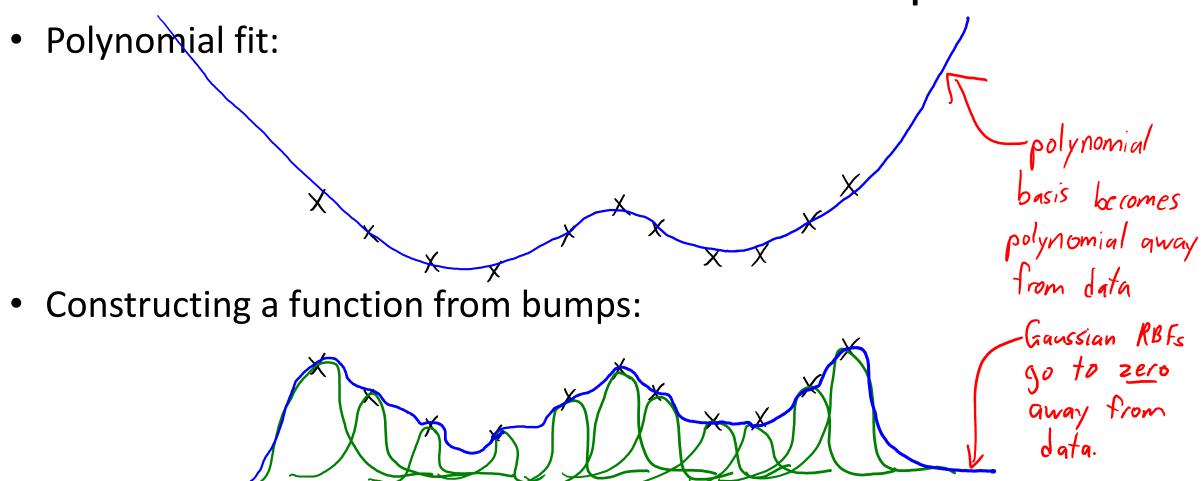
Gaussian RBFs: A Sum of "bumps"

$$y_i = w_0$$
 + w_1 + w_2 + w_3 + w_4 Polynomials basis represents function as sum of global polynomials.

 $y_i = w_0$ + w_1 + w_2 + w_3 + w_4 + w_4

- Gaussian RBFs are universal approximators (compact subets of \mathbb{R}^d)
 - Enough bumps can approximate any continuous function to arbitrary precision.
 - Achieve optimal test error as 'n' goes to infinity.

Gaussian RBFs: A Sum of "Bumps"



Bonus slides: challenges of "far from data" (and future) predictions.

Gaussian RBF Parameters

- Some obvious questions:
 - 1. How many bumps should we use?
 - 2. Where should the bumps be centered?
 - 3. How high should the bumps go?
 - 4. How wide should the bumps be?

The usual answers:

- 1. We use 'n' bumps (non-parametric basis).
- 2. Each bump is centered on one training example x_i .
- 3. Fitting regression weights 'w' gives us the heights (and signs).
- 4. The width is a hyper-parameter (narrow bumps == complicated model).

Gaussian RBFs: Formal Details

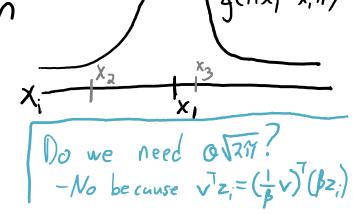
- What is a radial basis functions (RBFs)?
 - A set of non-parametric bases that depend on distances to training points.

Replace
$$X = \begin{cases} g(||x_1-x_1||) g(||x_1-x_2||) \cdots g(||x_1-x_n||) \\ g(||x_2-x||) g(||x_2-x_2||) \cdots g(||x_n-x_n||) \end{cases}$$

- Most common 'g' is Gaussian RBF:

$$g(\mathcal{E}) = e_{xp}\left(-\frac{\mathcal{E}^2}{2\sigma^2}\right)$$

- Variance σ^2 is a hyper-parameter controlling "width".
 - This affects fundamental trade-off (set it using a validation set).



Gaussian RBFs: Formal Details

- What is a radial basis functions (RBFs)?
 - A set of non-parametric bases that depend on distances to training points.

Replace
$$X = \begin{cases} \begin{cases} 1 \\ 1 \end{cases} \end{cases}$$

by $Z = \begin{cases} g(||x_i - x_i||) \ g(||x_i - x_i||) \ g(||x_i - x_i||) \end{cases}$

To make predictions on $\tilde{X} = \begin{cases} 1 \\ 1 \end{cases} \end{cases}$

Use $\tilde{Z} = \begin{cases} g(||x_i - x_i||) \ g(||x_i - x_i||) \ g(||x_i - x_i||) \end{cases}$

Number of "features" is number of training example.

Gaussian RBFs: Pseudo-Code

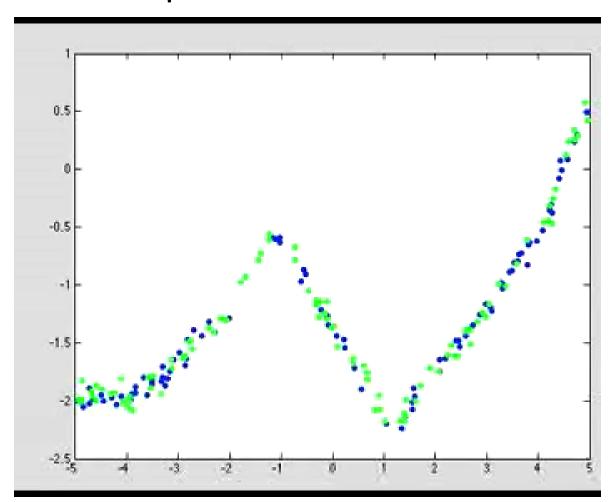
Input: data
$$\{X_1,y\}$$
 and hyper-parameters $\{A_1,\alpha^2\}$
 $Z = zcros(n,n)$
for il in 1:n

for i2 in lin

 $Z[il,i2] = exp(-norm(X[il,i]-X[i2,i])^2/2\sigma^2)$
 $V = (Z^7Z + \lambda I)^{-1}Z^7y$
With test data \hat{X} : form \hat{Z} based on distances to training examples predict $\hat{y} = \hat{Z}v$

Non-Parametric Basis: RBFs

Least squares with Gaussian RBFs for different σ values:



Could add bias and linear basis:

This reverts to linear regression instead of 0 away from data.

(pause)

RBFs and Regularization

- Radial basis functions (RBFs):
 - Basis functions that depend on distances to training points:

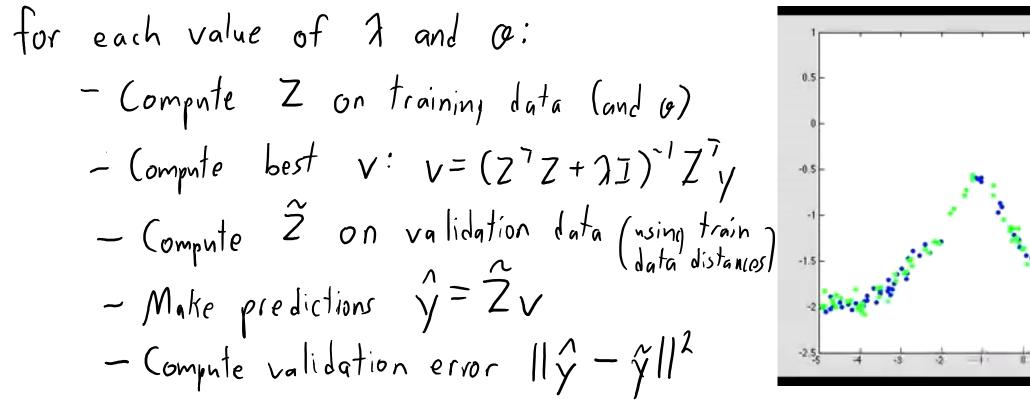
$$\hat{y}_{i} = w_{i} \exp\left(-\frac{\|x_{i} - x_{i}\|^{2}}{2\sigma^{2}}\right) + w_{2} \exp\left(-\frac{\|x_{i} - x_{2}\|^{2}}{2\sigma^{2}}\right) + \dots + w_{n} \exp\left(-\frac{\|x_{i} - x_{n}\|^{2}}{2\sigma^{2}}\right)$$

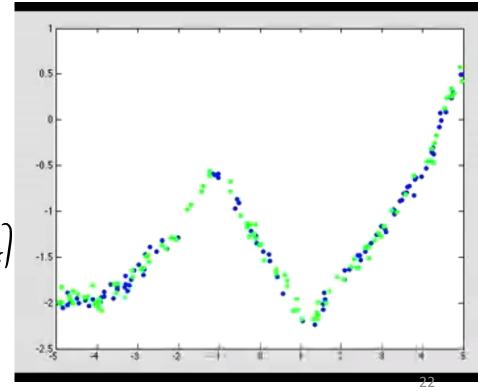
$$= \sum_{j=1}^{n} w_{j} \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\sigma^{2}}\right)$$

- Flexible bases that can model any continuous function.
- But with 'n' data points RBFs have 'n' basis functions.
- How do we avoid overfitting with this huge number of features?
 - We regularize 'w' and use validation error to choose σ and λ .

RBFs, Regularization, and Validation

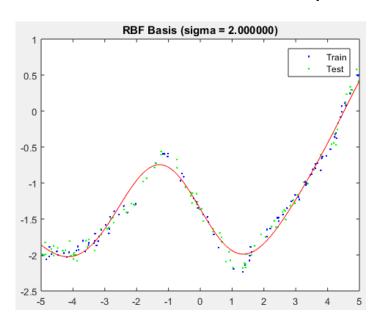
- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error!

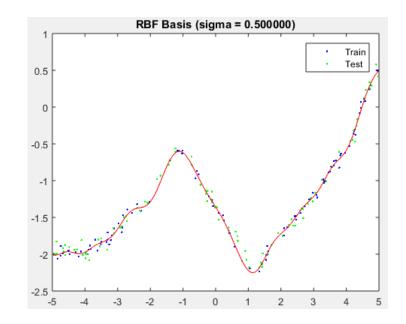


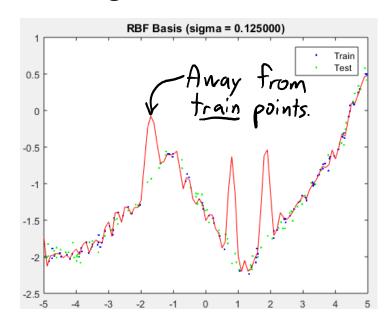


RBFs, Regularization, and Validation

- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error!







- Can add bias or linear/poly basis to do better away from data.
- Expensive at test time: needs distance to all training examples.

Hyper-Parameter Optimization

- In this setting we have 2 hyper-parameters (σ and λ).
- More complicated models have even more hyper-parameters.
 - This makes searching all values expensive (increases over-fitting risk).

- Leads to the problem of hyper-parameter optimization.
 - Try to efficiently find "best" hyper-parameters.

- Simplest approaches:
 - Exhaustive search: try all combinations among a fixed set of σ and λ values.
 - Random search: try random values.

Hyper-Parameter Optimization

- Other common hyper-parameter optimization methods:
 - Exhaustive search with pruning:
 - If it "looks" like test error is getting worse as you decrease λ , stop decreasing it.
 - Coordinate search:
 - Optimize one hyper-parameter at a time, keeping the others fixed.
 - Repeatedly go through the hyper-parameters
 - Stochastic local search:
 - Generic global optimization methods (simulated annealing, genetic algorithms, etc.).
 - Bayesian optimization (Mike's PhD research topic):
 - Use regression to build model of how hyper-parameters affect validation error.
 - Try the best guess based on the model.

(pause)

Previously: Search and Score

- We talked about search and score for feature selection:
 - Define a "score" and "search" for features with the best score.
- Usual scores count the number of non-zeroes ("LO-norm"):

$$f(w) = \frac{1}{2} \| \chi_w - y \|^2 + \lambda \| w \|_0$$
number of
non-zeroes
in w

- But it's hard to find the 'w' minimizing this objective.
- We discussed forward selection, but requires fitting O(d²) models.
 - For robust regression, need to run gradient descent O(d²) times.
 - With regularization, need to search for lambda O(d²) times.

L1-Regularization

Consider regularizing by the L1-norm:

$$f(w) = \frac{1}{2} || \chi_w - y ||^2 + \lambda ||w||_1$$

- Like L2-norm, it's convex and improves our test error.
- Like LO-norm, it encourages elements of 'w' to be exactly zero.

- L1-regularization simultaneously regularizes and selects features.
 - Very fast alternative to search and score.
 - Sometimes called "LASSO" regularization.

Regularizers and Sparsity

- L1-regularization give sparsity but L2-regularization doesn't.
 - But don't they both shrink variables to zero?
- Consider problem where 3 vectors can get minimum training error:

$$W' = \begin{bmatrix} 100 \\ 0.02 \end{bmatrix} \qquad W^2 = \begin{bmatrix} 100 \\ 0 \end{bmatrix} \qquad W^3 = \begin{bmatrix} 99.99 \\ 0.62 \end{bmatrix}$$

- Without regularization, we could choose any of these 3.
 - They all have same error, so regularization will "break tie".
- With L0-regularization, we would choose w²:

$$||w|||_{o} = 2$$
 $||w^{2}||_{o} = 1$ $||w^{3}||_{o} = 2$

Regularizers and Sparsity

- L1-regularization give sparsity but L2-regularization doesn't.
 - But don't they both shrink variables to zero?
- Consider problem where 3 vectors can get minimum training error:

$$W' = \begin{bmatrix} 100 \\ 0.02 \end{bmatrix} \qquad W^2 = \begin{bmatrix} 100 \\ 0 \end{bmatrix} \qquad W^3 = \begin{bmatrix} 99.99 \\ 0.62 \end{bmatrix}$$

• With L2-regularization, we would choose w³:

$$||w'||^2 = 100^2 + 0.01^2 \qquad ||w''||^2 = |000^2 + 0^2 \qquad ||w''||^2 = 99.99^2 + 0.01^2$$

$$= 10000.0004 \qquad = 9998.0005$$

• L2-regularization focuses on decreasing largest (makes w_i similar).

Regularizers and Sparsity

- L1-regularization give sparsity but L2-regularization doesn't.
 - But don't they both shrink variables to zero?
- Consider problem where 3 vectors can get minimum training error:

$$W' = \begin{bmatrix} 100 \\ 0.02 \end{bmatrix} \qquad W^2 = \begin{bmatrix} 100 \\ 0 \end{bmatrix} \qquad W^3 = \begin{bmatrix} 99.99 \\ 0.62 \end{bmatrix}$$

• With L1-regularization, we would choose w²:

$$||w'||_1 = |00 + 0.02 \qquad ||w^2||_1 = |00 + 0 \qquad ||w^3||_1 = 99.99 + 0.02$$

$$= |00.02 \qquad = |00 \qquad = 100.01$$

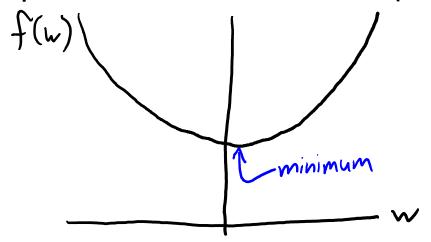
L1-regularization focuses on decreasing all w_i until they are 0.

Sparsity and Least Squares

Consider 1D least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2$$

• This is a convex 1D quadratic function of 'w' (i.e., a parabola):



- This variable does not look relevant (minimum is close to 0).
 - But for finite 'n' the minimum is unlikely to be exactly zero.

f'(0) = 0only happens

if $\sum_{i=1}^{n} y_i x_i = 0$.

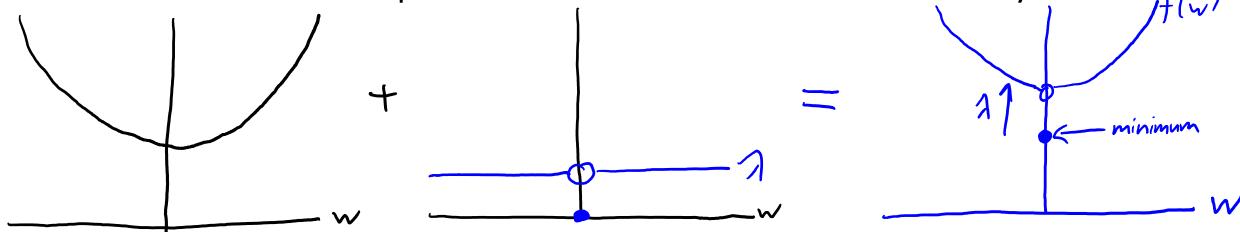
(bonus)

Sparsity and LO-Regularization

Consider 1D LO-regularized least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2 + 2||w||_0$$

This is a convex 1D quadratic function but with a discontinuity at 0:



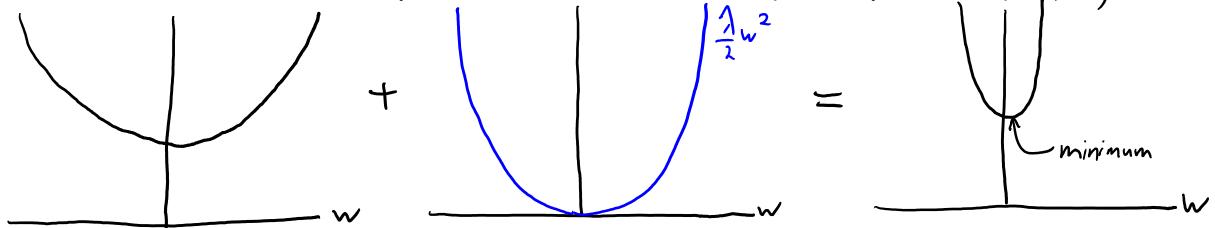
- L0-regularized minimum is often exactly at the 'discontinuity' at 0:
 - Sets the feature to exactly 0 (does feature selection), but is non-convex.

Sparsity and L2-Regularization

Consider 1D L2-regularized least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2 + \frac{3}{2} w^2$$

• This is a convex 1D quadratic function of 'w' (i.e., a parabola): 「f(√)



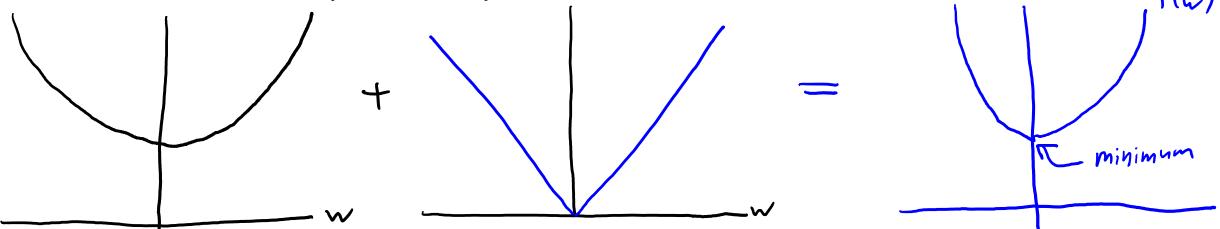
- L2-regularization moves it closer to zero, but not all the way to zero.
 - It doesn't do feature selection ("penalty goes to 0 as slope goes to 0"). f'(0) = 0

Sparsity and L1-Regularization

Consider 1D L1-regularized least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2 + \lambda |w|$$

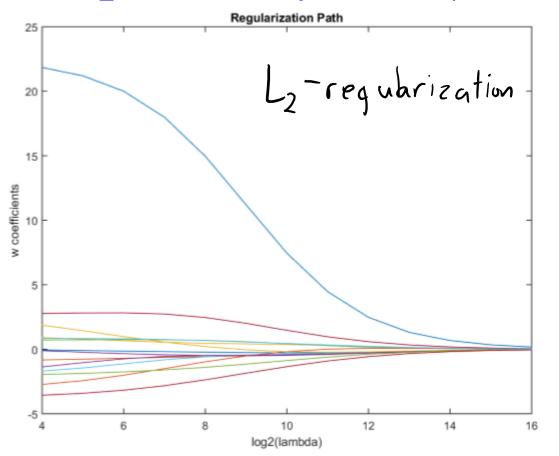
This is a convex piecwise-quadratic function of 'w' with 'kink' at 0:

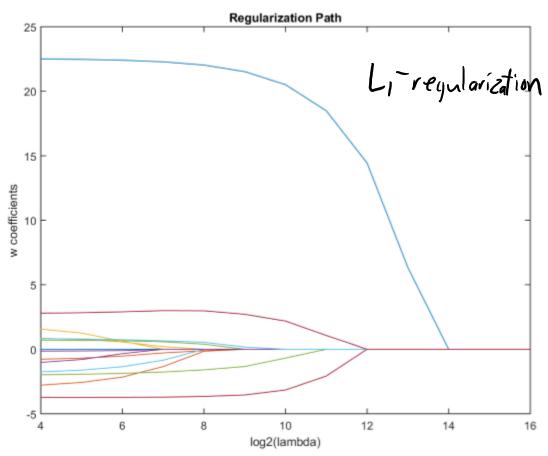


- L1-regularization tends to set variables to exactly 0 (feature selection).
 - Penalty on slope is λ even if you are close to zero.
 - Big λ selects few features, small λ allows many features.

L2-Regularization vs. L1-Regularization

• Regularization path of w_i values as ' λ ' varies:





Bonus slides: details on why only L1-regularization gives sparsity.

L2-Regularization vs. L1-Regularization

- L2-Regularization:
 - Insensitive to changes in data.
 - Decreased variance:
 - Lower test error.
 - Closed-form solution.
 - Solution is unique.
 - All 'w' tend to be non-zero.
 - Can learn with *linear* number of irrelevant features.
 - E.g., only O(d) relevant features.

- L1-Regularization:
 - Insensitive to changes in data.
 - Decreased variance:
 - Lower test error.
 - Requires iterative solver.
 - Solution is not unique.
 - Many 'w' tend to be zero.
 - Can learn with exponential number of irrelevant features.
 - E.g., only O(log(d)) relevant features.
 Paper on this result by Andrew Ng

L1-loss vs. L1-regularization

- Don't confuse the L1 loss with L1-regularization!
 - L1-loss is robust to outlier data points.
 - You can use instead of removing outliers.
 - L1-regularization is robust to irrelevant features.
 - You can use instead of removing features.
- And note that you can be robust to outliers and select features:

$$f(w) = || \chi_w - \gamma ||_1 + \lambda ||w||_1$$

- Why aren't we smoothing and using "Huber regularization"?
 - Huber regularizer is still robust to irrelevant features.
 - But it's the non-smoothness that sets weights to exactly 0.
 - And gradient descent doesn't work well for solving L1-regularization problems.

Summary

- Standardizing features:
 - For some models it makes sense to have features on the same scale.
- Radial basis functions:
 - Non-parametric bases that can model any function.
- L1-regularization:
 - Simultaneous regularization and feature selection.
 - Robust to having lots of irrelevant features.
- Next time: are we really going to use regression for classification?

Why doesn't L2-Regularization set variables to 0?

Consider an L2-regularized least squares problem with 1 feature:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (wx_i - y_i)^2 + \frac{7}{2}w^2$$

Let's solve for the optimal 'w':

Let's solve for the optimal w:

$$f'(w) = \sum_{i=1}^{n} x_i (wx_i - y_i) + 1w$$

$$Soft equal to 0: \sum_{i=1}^{n} x_i^2 w - \sum_{i=1}^{n} x_i y_i + 1w = 0$$

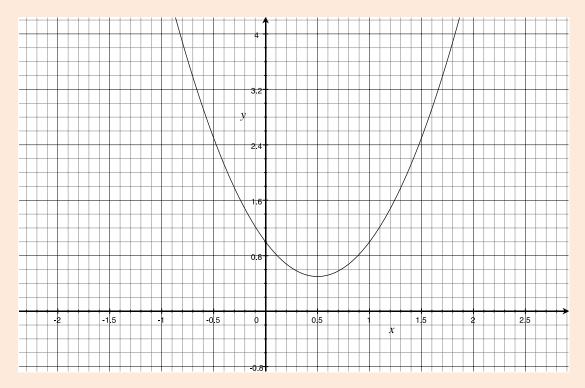
$$v'(x_i) = \sum_{i=1}^{n} x_i y_i + 1w$$

$$v'(x_i) = \sum$$

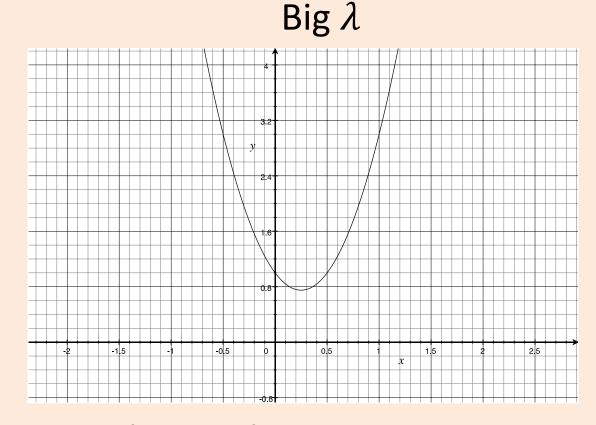
- So as λ gets bigger, 'w' converges to 0.
- However, for all finite λ 'w' will be non-zero unless $y^Tx = 0$.
 - But it's very unlikely that y^Tx will be exactly zero.

Why doesn't L2-Regularization set variables to 0?

• Small λ



Solution further from zero



Solution closer to zero (but not exactly 0)

Why does L1-Regularization set things to 0?

Consider an L1-regularized least squares problem with 1 feature:

$$f(u) = \frac{1}{2} \hat{\xi} (wx_i - y_i)^2 + \lambda |w|$$

• If (w = 0), then "left" limit and "right" limit are given by:

$$f^{-}(0) = \sum_{i=1}^{n} x_{i} (0x_{i} - y_{i}) - \lambda$$

$$= \sum_{i=1}^{n} x_{i} y_{i} - \lambda$$

$$= \sum_{i=1}^{n} x_{i} y_{i} - \lambda$$

$$= \sum_{i=1}^{n} x_{i} y_{i} + \lambda$$

• So what should gradient descent do if (w=0)?

$$-f^{-}(0) = -y^{T}x + \lambda \quad \text{If these are positive } (-y^{T}x > \lambda),$$

$$-f^{+}(0) = -y^{T}x - \lambda \quad \text{we can improve by increasing 'w'}. \quad \text{But if left and right "gradient}$$

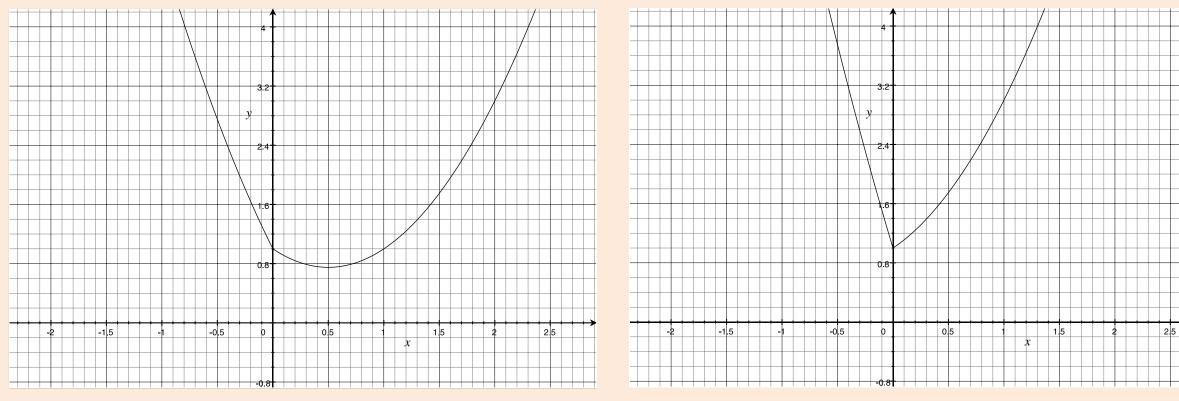
$$\text{If these are negative } (y^{T}x > \lambda), \quad \text{descent" directions point in apposite}$$

$$\text{We can improve by decreasing w'}. \quad \text{directions } (|y^{T}x| \leq \lambda), \quad \text{minimum is } 0.$$

Why does L1-Regularization set things to 0?

• Small λ

Big λ



Solution nonzero

(minimum of left parabola is past origin, but right parabola is not)

Solution exactly zero

(minimum of both parabola are past the origin),

L2-regularization vs. L1-regularization

- So with 1 feature:
 - L2-regularization only sets 'w' to 0 if $y^Tx = 0$.
 - There is a only a single possible y^Tx value where the variable gets set to zero.
 - And λ has nothing to do with the sparsity.
 - L1-regularization sets 'w' to 0 if $|y^Tx| \le \lambda$.
 - There is a range of possible y^Tx values where the variable gets set to zero.
 - And increasing λ increases the sparsity since the range of y^Tx grows.
- Not that it's really important that the function is non-differentiable:
 - If we used "Huber regularization", it would select all variables.

L1-Loss vs. Huber Loss

- The same reasoning tells us the difference between the L1 *loss*
 and the Huber loss. They are very similar in that they both grow
 linearly far away from 0. So both are both robust but...
 - With the L1 loss the model often passes exactly through some points.
 - With Huber the model doesn't necessarily pass through any points.

• Why? With L1-regularization we were causing the elements of 'w' to be exactly 0. Analogously, with the L1-loss we cause the elements of 'r' (the residual) to be exactly zero. But zero residual for an example means you pass through that example exactly.

Non-Uniqueness of L1-Regularized Solution

- How can L1-regularized least squares solution not be unique?
 - Isn't it convex?
- Convexity implies that minimum value of f(w) is unique (if exists), but there may be multiple 'w' values that achieve the minimum.

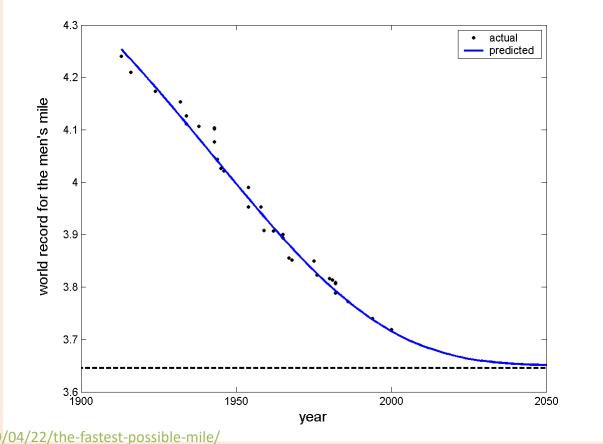
• Consider L1-regularized least squares with d=2, where feature 2 is a copy of a feature 1. For a solution (w_1, w_2) we have:

$$\hat{y}_{i} = w_{i} x_{i1} + w_{2} x_{i2} = w_{i} x_{i1} + w_{2} x_{i1} = (w_{i} + w_{2}) x_{i1}$$

• So we can get the same squared error with different w_1 and w_2 values that have the same sum. Further, if neither w_1 or w_2 changes sign, then $|w_1| + |w_2|$ will be the same so the new w_1 and w_2 will be a solution.

Predicting the Future

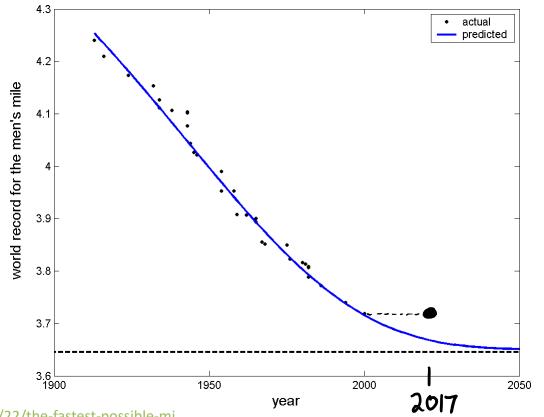
- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.



https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mile/

Predicting the Future

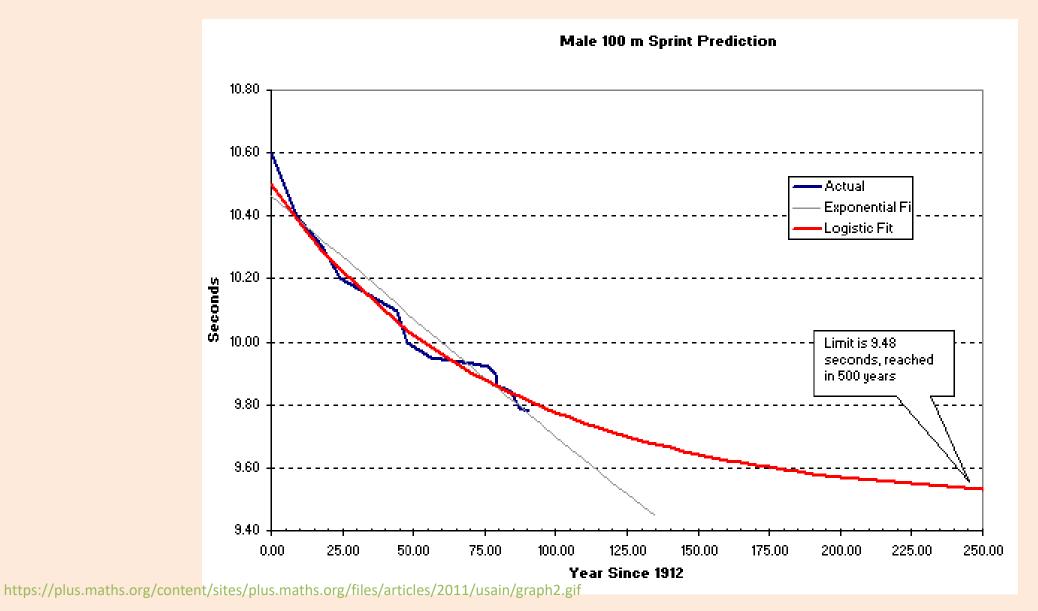
- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.



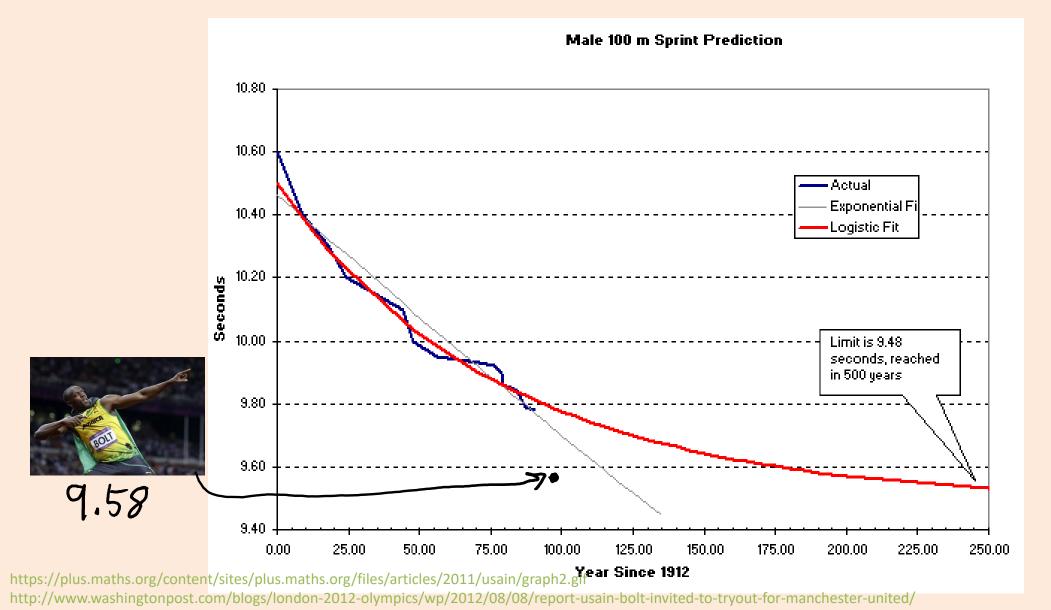
We need to be Cantians about doing this.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mihttps://overthehillsports.wordpress.com/tag/hicham-el-guerrouj/le/

Predicting 100m times 400 years in the future?

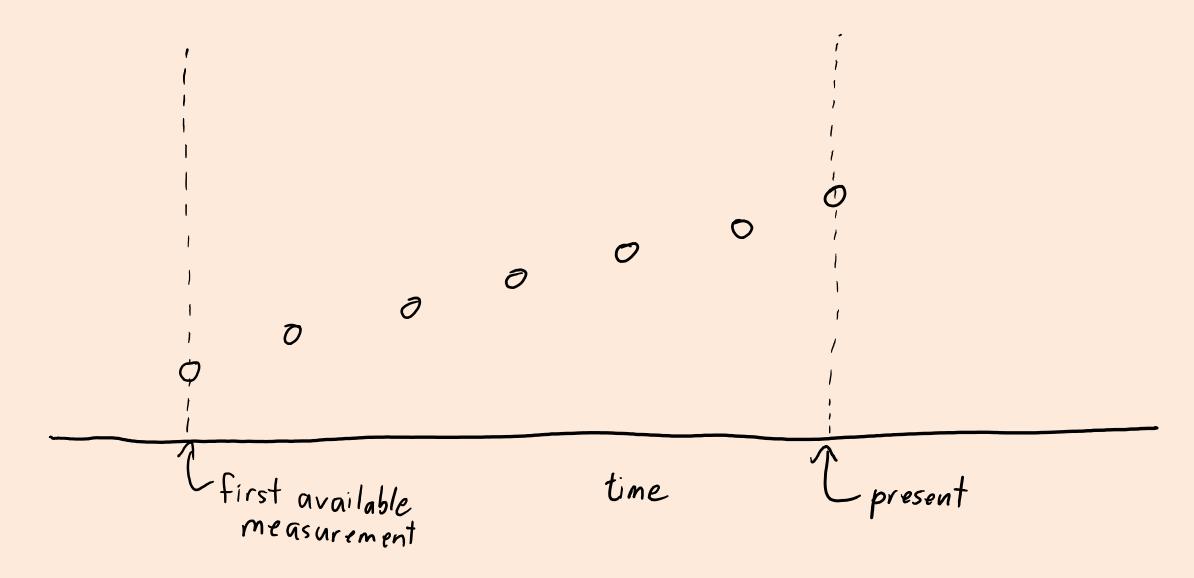


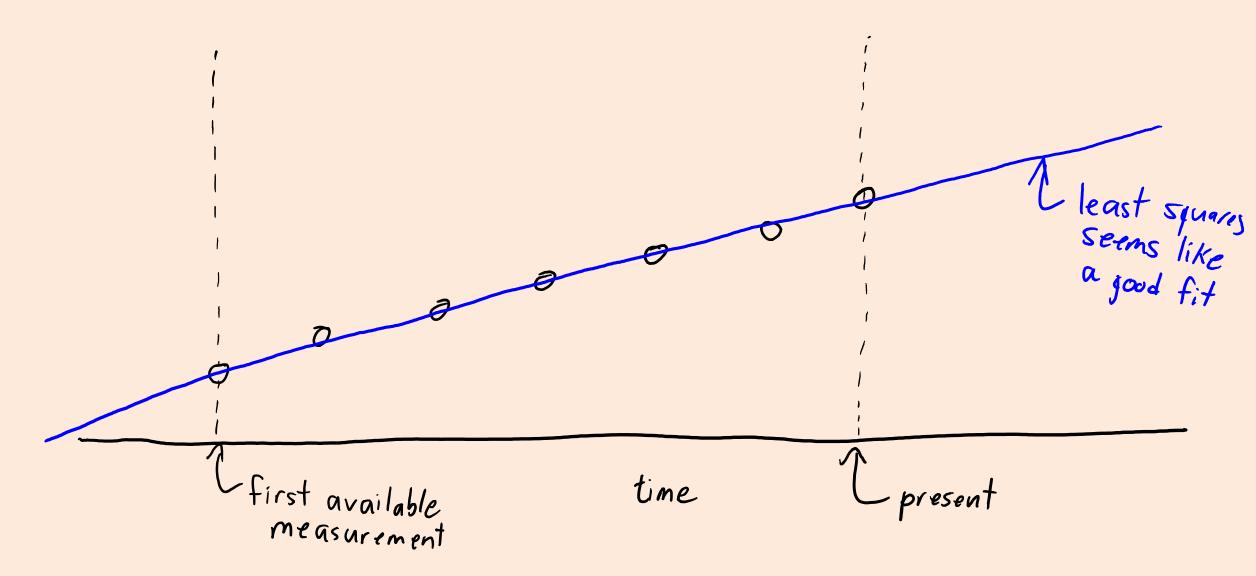
Predicting 100m times 400 years in the future?

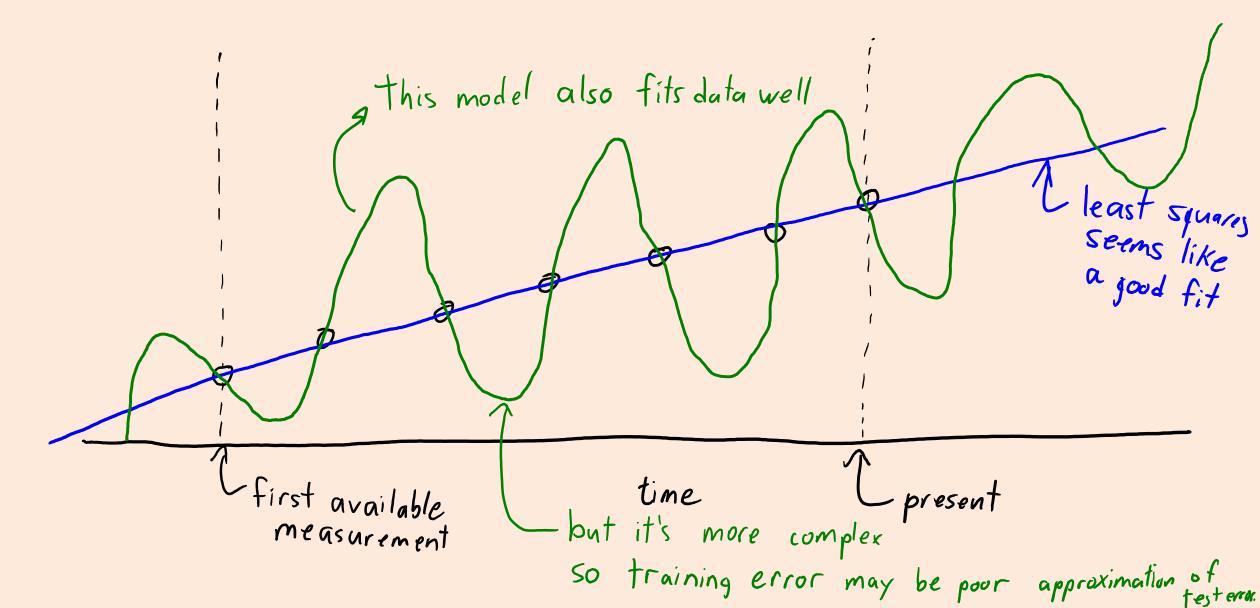


Interpolation vs Extrapolation

- Interpolation is task of predicting "between the data points".
 - Regression models are good at this if you have enough data and function is smooth.
- Extrapolation is task of prediction outside the range of the data points.
 - Without assumptions, regression models can be embarrassingly-bad at this.
- If you run the 100m regression models backwards in time:
 - They predict that humans used to be really really slow!
- If you run the 100m regression models forwards in time:
 - They might eventually predict arbitrarily-small 100m times.
 - The linear model actually predicts negative times in the future.
 - These time traveling races in 2060 should be pretty exciting!
- Some discussion here:
 - http://callingbullshit.org/case studies/case study gender gap running.html







Ockham's Razor vs. No Free Lunch

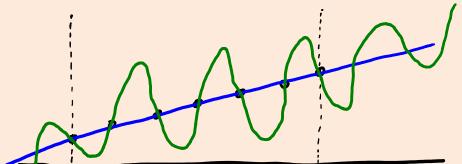
- Ockham's razor is a problem-solving principle:
 - "Among competing hypotheses, the one with the fewest assumptions should be selected."
 - Suggests we should select linear model.

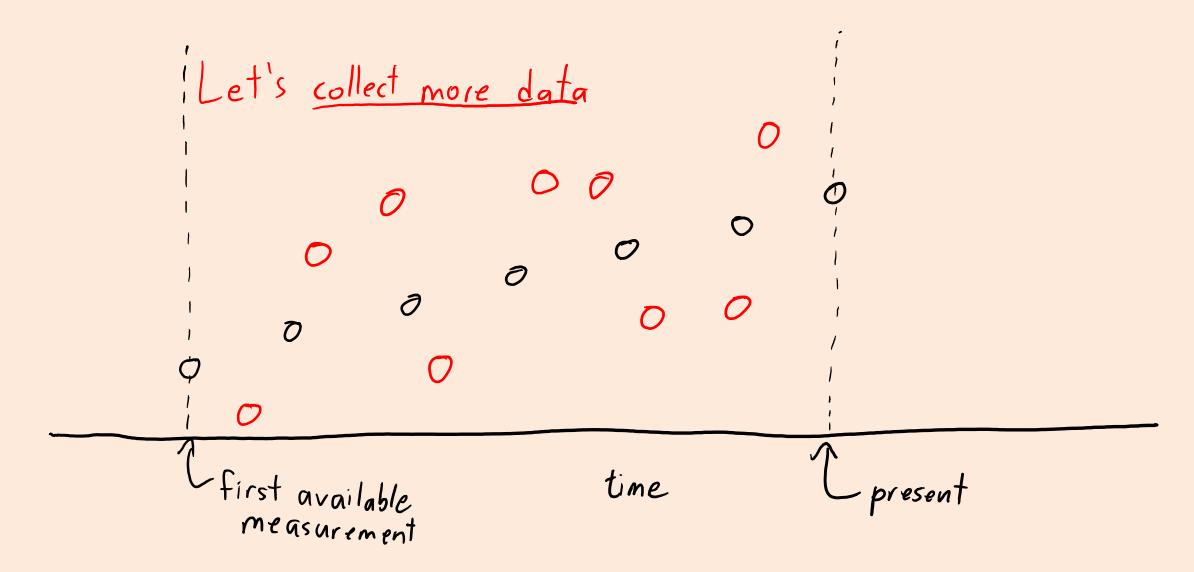
Fundamental trade-off:

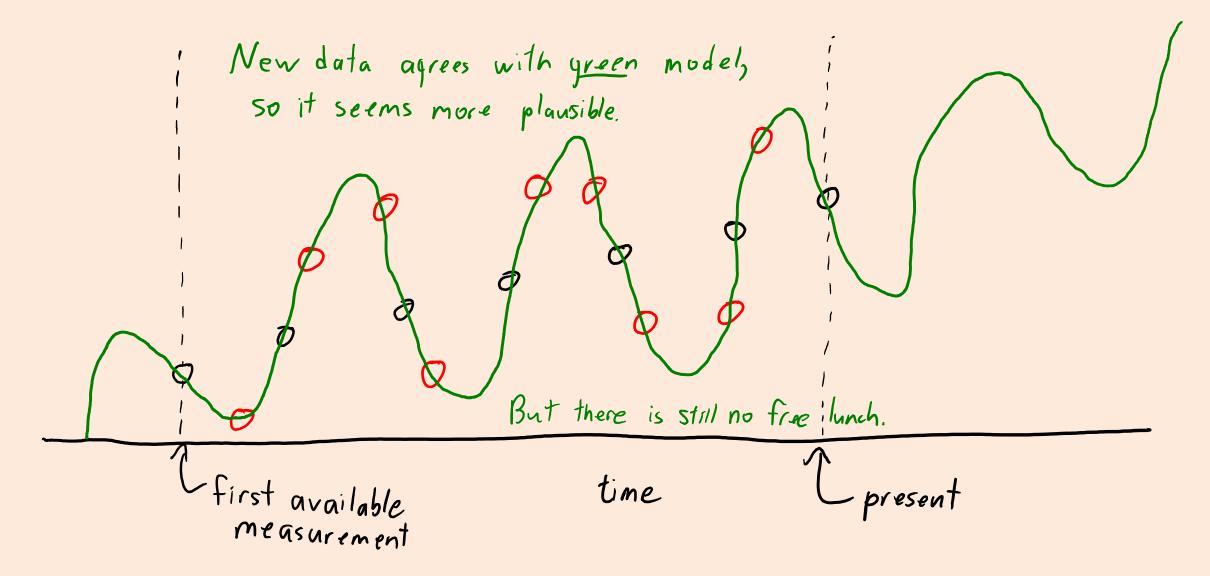
- If same training error, pick model less likely to overfit.
- Formal version of Occam's problem-solving principle.
- Also suggests we should select linear model.

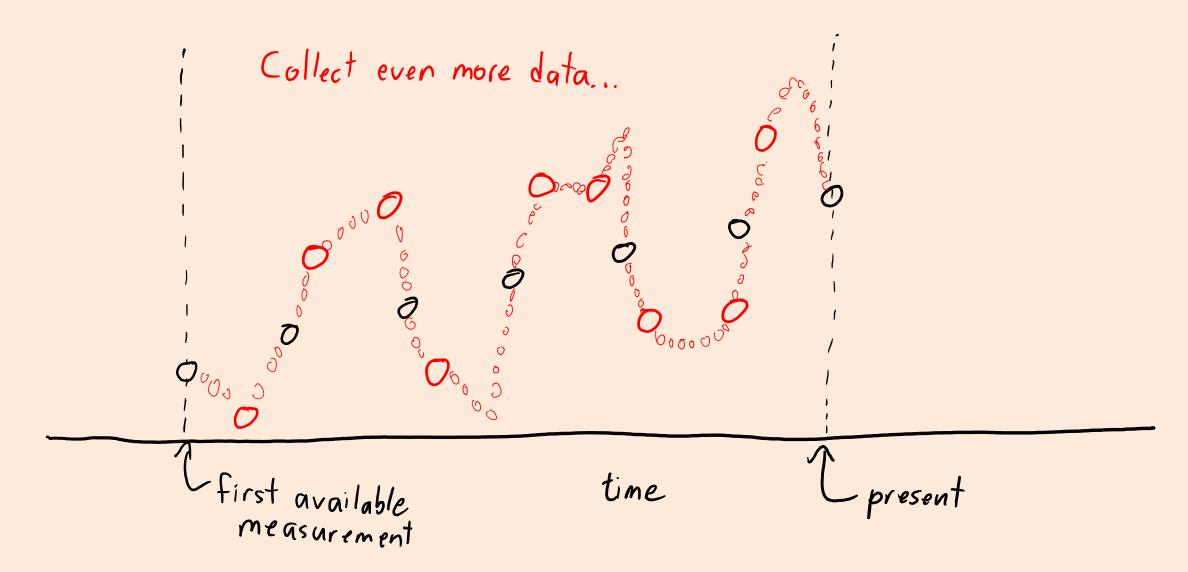
No free lunch theorem:

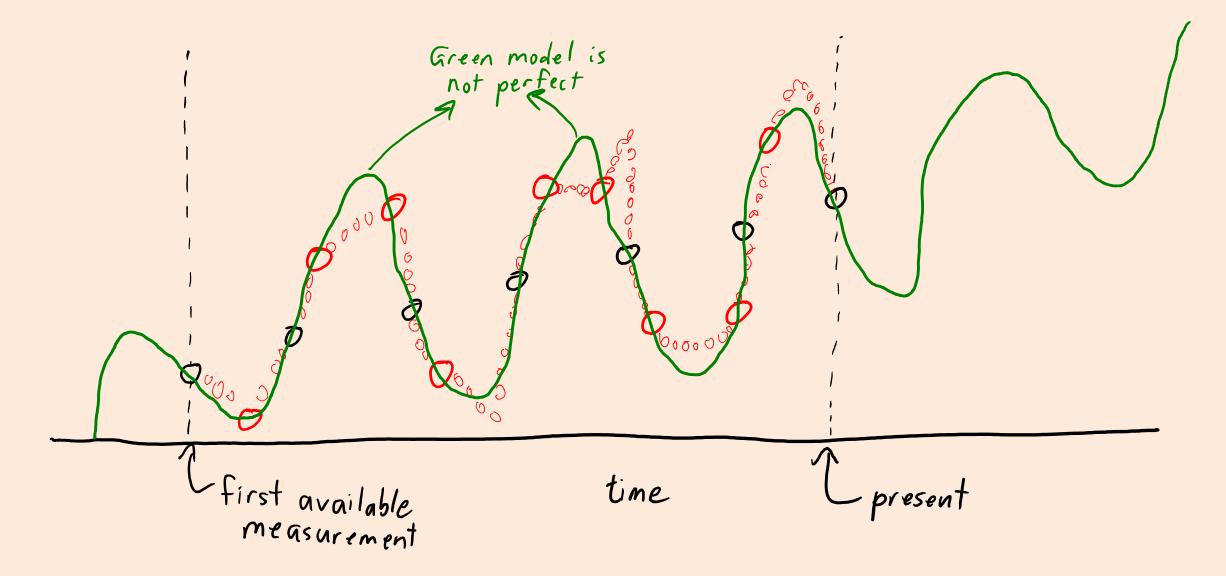
 There exists possible datasets where you should select the green model.

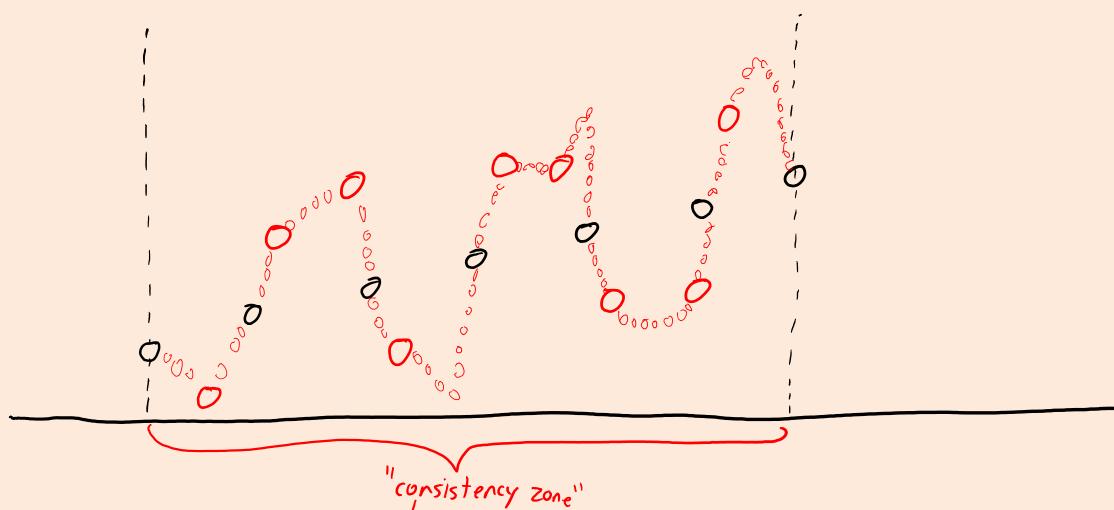




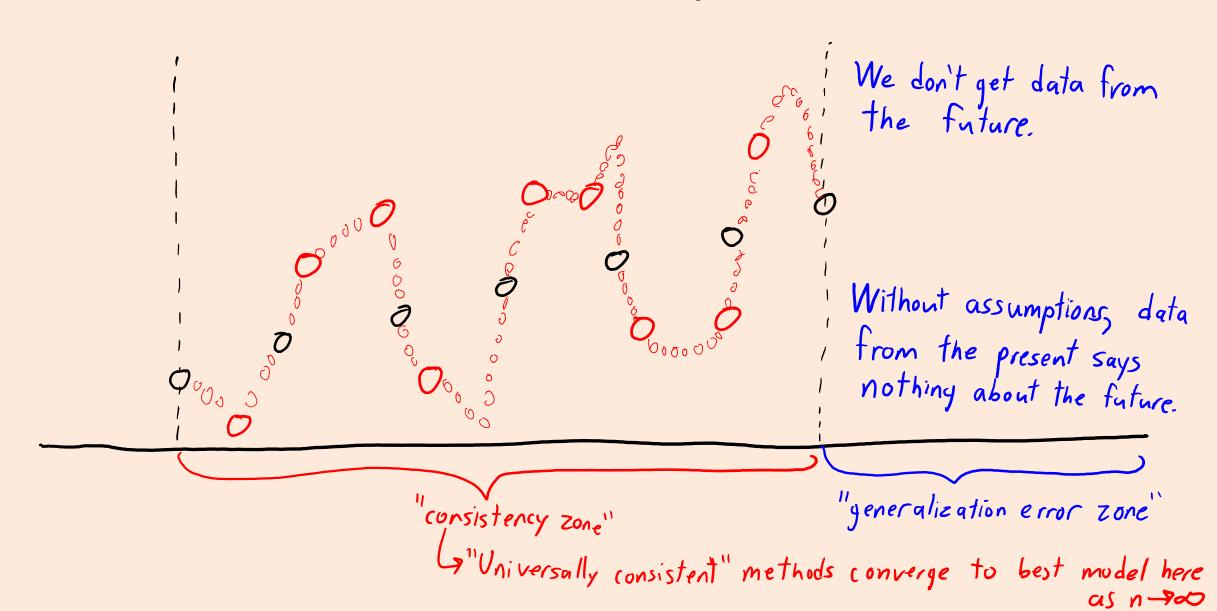


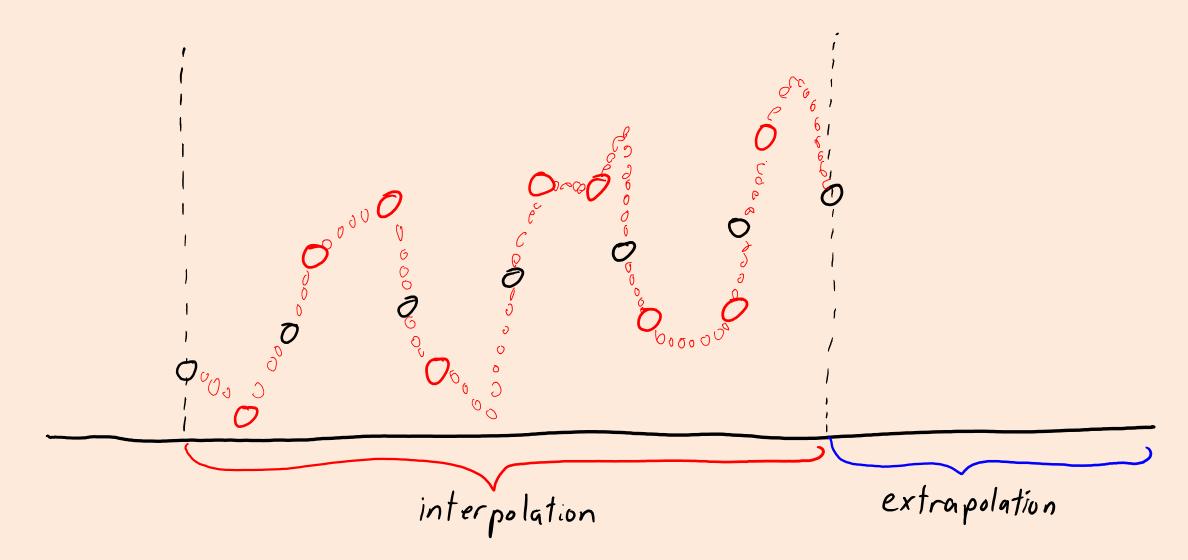






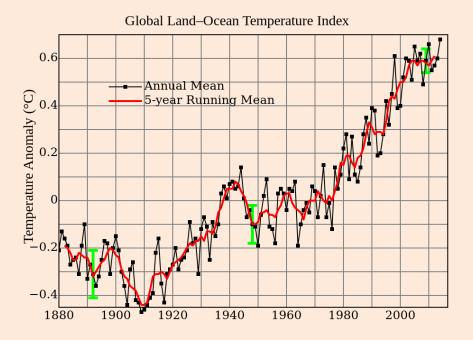
Universally consistent" methods converge to best model here as n-900





Discussion: Climate Models

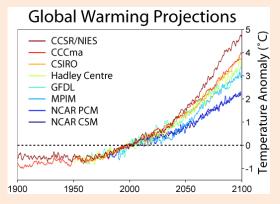
- Has Earth warmed up over last 100 years? (Consistency zone)
 - Data clearly says "yes".



- Will Earth continue to warm over next 100 years? (generalization error)
 - We should be more skeptical about models that predict future events.

Discussion: Climate Models

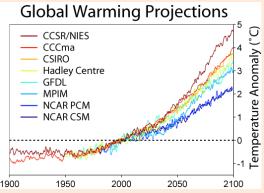
- So should we all become global warming skeptics?
- If we average over models that overfit in *independent* ways, we expect the test error to be lower, so this gives more confidence:



- We should be skeptical of individual models, but agreeing predictions made by models with different data/assumptions are more likely be true.
- All the near-future predictions agree, so they are likely to be accurate.
- Variance is higher further into future, so predictions are less reliable.

Discussion: Climate Models

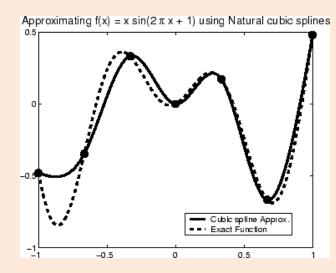
- So should we all become global warming skeptics?
- If we average over models that overfit in *independent* ways, we expect the test error to be lower, so this gives more confidence:



- Process is probably continuous:
 - If so, near-future predictions would be "close enough" to consistency zone.
 - As we go further in the future, we enter "no free lunch" zone where we start to need to reliable more and more on our assumptions.

Splines in 1D

- For 1D interpolation, alternative to polynomials/RBFs are splines:
 - Use a polynomial in the region between each data point.
 - Constrain some derivatives of the polynomials to yield a unique solution.
- Most common example is cubic spline:
 - Use a degree-3 polynomial between each pair of points.
 - Enforce that f'(x) and f''(x) of polynomials agree at all point.
 - "Natural" spline also enforces f''(x) = 0 for smallest and largest x.
- Non-trivial fact: natural cubic splines are sum of:
 - Y-intercept.
 - Linear basis.
 - RBFs with $g(\varepsilon) = \varepsilon^3$.
 - Different than Gaussian RBF because it increases with distance.

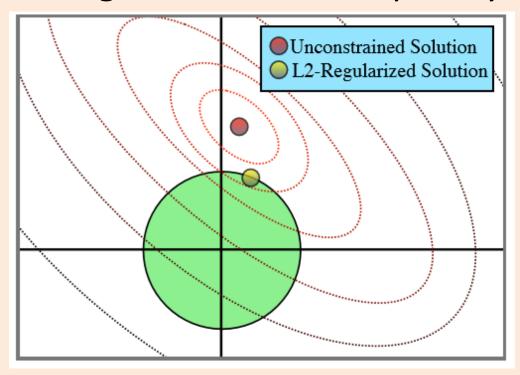


Splines in Higher Dimensions

- Splines generalize to higher dimensions if data lies on a grid.
 - For more general ("scattered") data, there isn't a natural generalization.
- Common 2D "scattered" data interpolation is thin-plate splines:
 - Based on curve made when bending sheets of metal.
 - Corresponds to RBFs with $g(\varepsilon) = \varepsilon^2 \log(\varepsilon)$.
- Natural splines and thin-plate splines: special cases of "polyharmonic" splines:
 - Less sensitive to parameters than Gaussian RBF.

L2-Regularization vs. L1-Regularization

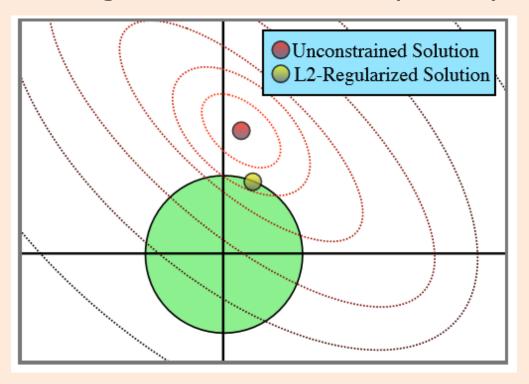
• L2-regularization conceptually restricts 'w' to a ball.

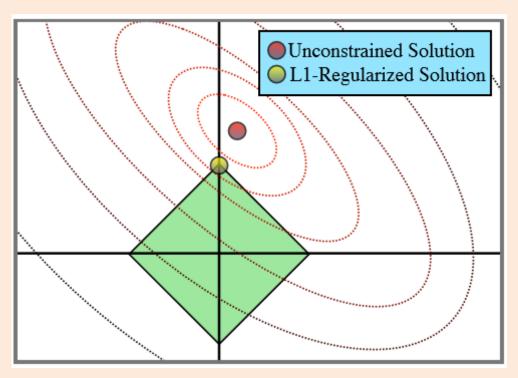


Minimizing
$$\frac{1}{2}||Xw-y||^2 + \frac{2}{2}||w||^2$$
is equivalent to minimizing
$$\frac{1}{2}||Xw-y||^2 \quad \text{subject to}$$
the constraint that $||w|| \leq \gamma$
for some value γ

L2-Regularization vs. L1-Regularization

• L2-regularization conceptually restricts 'w' to a ball.





- L1-regularization restricts to the L1 "ball":
 - Solutions tend to be at corners where w_i are zero.