CPSC 340:
Machine Learning and Data Mining

Nonlinear Regression
Fall 2017



Admin

* Assignment 2 is due tonight.
— 1 late day to hand it in on Monday, 2 for Wednesday.

e Extra office hours
— Day before the midterm, October 19 at 4pm (ICICS 246).

* Midterm details:

— Posted on Piazza, with previous midterms.



Feedback from TAs...

1 mark out of 150 on 1 assignment is not a big deal.

Things that will get you 0 on Assignment 2:
— Missing name and student number on assignment.
— Not submitting a .zip file named a2.zip (a .rar file is not a .zip file).
— Not having a .pdf file in a2.zip called a2.pdf.
— Using the wrong assignment number on handin.

Things that will get you 0 on individual questions:

— Not including code in the .pdf file at the right spot.
(Though you can just include changed parts of code, just say where you make changes.)

Things that can get you 0 in the course:
— Submitting someone else’s work without citing them.



1.

3.

4.

5.

Summary of Last Lecture (Memorize This)

Error functions:

— Squared error is sensitive to outliers.

— Absolute (L,) error and Huber error are more robust to outliers.

— Brittle (L.,) error is more sensitive to outliers.

L, and L., error functions are convex but non-differentiable:
— Finding ‘W’ minimizing these errors is harder than squared error.

We can approximate these with convex differentiable functions:
— L, can be approximated with Huber.
— L., can be approximated with log-sum-exp.

Gradient descent finds stationary point of differentiable function.
— “Stationary point” == “critical point” == “a ‘w’ where V f(w) = 0”.
For convex functions, any stationary point is a global minimum.

— So gradient descent finds global minimum.



Very Robust Regression
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* Non-convex errors can be very robust:

— Not influenced by outlier groups.
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Very Robust Regression
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— But non-convex, so finding
global minimum is hard.

This local mininmum

L, erroc mighf do

— Absolute value is “most robust” something like This.

convex loss function. | ,,
'Ver bus?" errors should
\// )4 ronwuys S

pick’ This  line.



(pause)
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Motivation: Non-Linear Progressions in Athletics

* Are top athletes going faster, higher, and farther?
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:



Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y.) with Gaussian or other model.
* CPSC 540.




Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y,) with Gaussian or other model.

— Non-parametric models:

* KNN regression:
— Find ‘k’ nearest neighbours of X.
— Return the mean of the corresponding vy..
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y,) with Gaussian or other model.
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* KNN regression.
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Adapting Counting/Distance-Based Methods

We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y,) with Gaussian or other model.
— Non-parametric models:

* KNN regression.

* Could be weighted by distance. |
* ‘Nadaraya-Waston’: weight all y, by distance to x.. =
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Adapting Counting/| &
* We can adapt our classificatig z
— Regression tree: tree with mea = -
— Probabilistic models: fit p(x; | S
— Non-parametric models: o

* KNN regression.

X

* ‘Nadaraya-Waston’: weight all 'y,

* Could be weighted by distance. 7/

* ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)



Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y,) with Gaussian or other model.

— Non-parametric models:
* KNN regression.
* Could be weighted by distance.
* ‘Nadaraya-Waston’: weight all y, by distance to x..
* ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)
— Ensemble methods:

e Can improve performance by averaging across regression models.



Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression.

e Applications:

— Regression forests for fluid simulation:
e https://www.youtube.com/watch?v=kGB7Wd9CudA
— KNN for image completion:
* http://graphics.cs.cmu.edu/projects/scene-completion
* Combined with “graph cuts” and “Poisson blending”.

— KNN regression for “voice photoshop”:
e https://www.youtube.com/watch?v=1314XLZ59iw
* Combined with “dynamic time warping” and “Poisson blending”.

e But we’ll focus on linear models with non-linear transforms.
— These are the building blocks for more advanced methods.


https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://www.youtube.com/watch?v=I3l4XLZ59iw

Motivation: Limitations of Linear Models

* On many datasets, y, is not a linear function of x..
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* Can we use least square to fit non-linear models?



Non-Linear Feature Transforms

Can we use linear least squares to fit a quadratic model?
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You can do this by changing the features (change of basis):
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Fit new parameters ‘v’ under “change of basis”: v = (Z2'2)*(Z'y).
It’s a linear function of w, but a quadratic function of x..



Non-Linear Feature Transforms
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General Polynomial Features (d=1)

 We can have a polynomial of degree ‘p” by using these features:
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* There are polynomial basis functions that are numerically nicer:
— E.g., Lagrange polynomials (see CPSC 303).



General Polynomial Features
Degree 7

* If you have more than one feature, you include interactions:

— With p=2, in addition to (x;;)? and (x.,)? you would include x.,x.,.



Degree of Polynomial and Fundamental Trade-Off

As the polynomial degree increases, the training error goes down.
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But approximation error goes up: we start overfitting with large ‘p’.
Usual approach to selecting degree: validation or cross-validation.



Beyond Polynomial Transformations

* Polynomials are not the only possible transformation:
— Exponentials, logarithms, trigonometric functions, etc.

— The right non-linear transform will vastly improve performance. For P odic dat
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End of Scope for Midterm Material.



Finding the “True” Model

 What if our goal is find the “true” model?
— We believe that y, really is a polynomial function of x..
— We want to find the degree of the polynomial ‘p’.

* Should we choose the ‘p’ with the lowest training error?

— No, this will pick a ‘p’ that is way too large.
(training error always decreases as you increase ‘p’)



Finding the “True” Model

 What if our goal is find the “true” model?
— We believe that y, really is a polynomial function of x..
— We want to find the degree of the polynomial ‘p’.

* Should we choose the ‘p’ with the lowest validation error?

— This will also often choose a ‘p’ that is too large.

— Even if true model has p=2, this is a special case of a degree-3 polynomial.
— If ‘p’ is too big then we overfit, but might still get a lower validation error.

* Another example of optimization bias.



Complexity Penalties

 There are a lot of “scores” people use to find the “true” model.

e Basic idea behind them: put a penalty on the model complexity.
— Want to fit the data and have a simple model.

* For example, minimize training error plus the degree of polynomial.
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* If two ‘p’ values have similar error, this prefers the smaller ‘p’.



Summary

Tree/probabilistic/non-parametric/ensemble regression methods.
Non-linear transforms:
— Allow us to model non-linear relationships with linear models.

Complexity penalties can counter optimization bias.
— When we want to find the “true” model.

Next time:
— Can we find the “true” features?



