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Admin

• Assignment 2 is due tonight.

– 1 late day to hand it in on Monday, 2 for Wednesday.

• Extra office hours

– Day before the midterm, October 19th at 4pm (ICICS 246).

• Midterm details: 

– Posted on Piazza, with previous midterms.



Feedback from TAs…

• 1 mark out of 150 on 1 assignment is not a big deal.

• Things that will get you 0 on Assignment 2:
– Missing name and student number on assignment.
– Not submitting a .zip file named a2.zip (a .rar file is not a .zip file).
– Not having a .pdf file in a2.zip called a2.pdf.
– Using the wrong assignment number on handin.

• Things that will get you 0 on individual questions:
– Not including code in the .pdf file at the right spot.

(Though you can just include changed parts of code, just say where you make changes.)

• Things that can get you 0 in the course:
– Submitting someone else’s work without citing them.



Summary of Last Lecture (Memorize This)

1. Error functions:
– Squared error is sensitive to outliers.
– Absolute (L1) error and Huber error are more robust to outliers.
– Brittle (L∞) error is more sensitive to outliers.

2. L1 and L∞ error functions are convex but non-differentiable:
– Finding ‘w’ minimizing these errors is harder than squared error.

3. We can approximate these with convex differentiable functions:
– L1 can be approximated with Huber.
– L∞ can be approximated with log-sum-exp.

4. Gradient descent finds stationary point of differentiable function.
– “Stationary point” == “critical point” == “a ‘w’ where ∇ f(w) = 0”.

5. For convex functions, any stationary point is a global minimum.
– So gradient descent finds global minimum.



Very Robust Regression

• Non-convex errors can be very robust:

– Not influenced by outlier groups.



Very Robust Regression

• Non-convex errors can be very robust:

– Not influenced by outlier groups.

– But non-convex, so finding
global minimum is hard.

– Absolute value is “most robust”
convex loss function.



(pause)



Motivation: Non-Linear Progressions in Athletics

• Are top athletes going faster, higher, and farther?

http://www.at-a-lanta.nl/weia/Progressie.html
https://en.wikipedia.org/wiki/Usain_Bolt
http://www.britannica.com/biography/Florence-Griffith-Joyner



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

http://www.at-a-lanta.nl/weia/Progressie.html
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Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

• CPSC 540.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression:
– Find ‘k’ nearest neighbours of xi.

– Return the mean of the corresponding yi.

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.
– Close points ‘j’ get more “weight” wij.

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel-regression-with-variable-window-width/content/ksr_vw.m



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Waston’: weight all yi by distance to xi.

• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

– Ensemble methods:

• Can improve performance by averaging across regression models.



Adapting Counting/Distance-Based Methods

• We can adapt our classification methods to perform regression.

• Applications:
– Regression forests for fluid simulation:

• https://www.youtube.com/watch?v=kGB7Wd9CudA

– KNN for image completion:
• http://graphics.cs.cmu.edu/projects/scene-completion
• Combined with “graph cuts” and “Poisson blending”.

– KNN regression for “voice photoshop”:
• https://www.youtube.com/watch?v=I3l4XLZ59iw
• Combined with “dynamic time warping” and “Poisson blending”.

• But we’ll focus on linear models with non-linear transforms.
– These are the building blocks for more advanced methods.

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm

https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://www.youtube.com/watch?v=I3l4XLZ59iw


Motivation: Limitations of Linear Models

• On many datasets, yi is not a linear function of xi.

• Can we use least square to fit non-linear models?



Non-Linear Feature Transforms

• Can we use linear least squares to fit a quadratic model?

• You can do this by changing the features (change of basis):

• Fit new parameters ‘v’ under “change of basis”: v = (ZTZ)-1(ZTy).

• It’s a linear function of w, but a quadratic function of xi.



Non-Linear Feature Transforms



General Polynomial Features (d=1)

• We can have a polynomial of degree ‘p’ by using these features:

• There are polynomial basis functions that are numerically nicer:
– E.g., Lagrange polynomials (see CPSC 303).



General Polynomial Features

• If you have more than one feature, you include interactions:

– With p=2, in addition to (xi1)2 and (xi2)2 you would include xi1xi2.



Degree of Polynomial and Fundamental Trade-Off

• As the polynomial degree increases, the training error goes down.

• But approximation error goes up: we start overfitting with large ‘p’.

• Usual approach to selecting degree: validation or cross-validation.
http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf



Beyond Polynomial Transformations

• Polynomials are not the only possible transformation:
– Exponentials, logarithms, trigonometric functions, etc.

– The right non-linear transform will vastly improve performance.

– But when you have a lot of features, the right basis may not be obvious.

• The above bases are parametric model:
– The size of the model does not depend on the number of training examples ‘n’.

– As ‘n’ increases, you can estimate the model more accurately.

– But at some point, more data doesn’t help because model is too simple.

• Alternative is non-parametric models:
– Size of the model grows with the number of training examples.

– Model gets more complicated as you get more data.

– You can model very complicated functions where you don’t know the right basis.



End of Scope for Midterm Material.



Finding the “True” Model

• What if our goal is find the “true” model?

– We believe that yi really is a polynomial function of xi.

– We want to find the degree of the polynomial ‘p’.

• Should we choose the ‘p’ with the lowest training error?

– No, this will pick a ‘p’ that is way too large. 
(training error always decreases as you increase ‘p’)



Finding the “True” Model

• What if our goal is find the “true” model?

– We believe that yi really is a polynomial function of xi.

– We want to find the degree of the polynomial ‘p’.

• Should we choose the ‘p’ with the lowest validation error?

– This will also often choose a ‘p’ that is too large.

– Even if true model has p=2, this is a special case of a degree-3 polynomial.

– If ‘p’ is too big then we overfit, but might still get a lower validation error.

• Another example of optimization bias.



Complexity Penalties

• There are a lot of “scores” people use to find the “true” model.

• Basic idea behind them: put a penalty on the model complexity.

– Want to fit the data and have a simple model.

• For example, minimize training error plus the degree of polynomial.

– If we use p=4, use “training error plus 4” as error.

• If two ‘p’ values have similar error, this prefers the smaller ‘p’.



Summary

• Tree/probabilistic/non-parametric/ensemble regression methods.

• Non-linear transforms:

– Allow us to model non-linear relationships with linear models.

• Complexity penalties can counter optimization bias.

– When we want to find the “true” model.

• Next time:

– Can we find the “true” features?


