
CPSC 340:
Machine Learning and Data Mining

Gradient Descent

Fall 2017

Admin
• We will have tutorials on non-holiday days this week.

• Assignment 2 is due Friday.
– 1 late day to hand it in on Monday, 2 for Wednesday.
– The “imread” function is in PyPlot (not Images.jl), weird error in findMin.jl (fixed in a2.zip).

• Assignment 1 marks are up.
– If you have questions, see “Assignment 1 Marking Thread” on Piazza.

• Extra office hours:
– 2 TAs on the Thursday 2-3pm office hours when assignments are due.
– Extra office hours this Friday at 1-2 (Siyuan at Table 2).
– Extra instructor office hours on October 19th 4pm (ICICS 246).

• Midterm details:
– In class October 20th (55 minutes).
– 1 page double-sided cheat sheet.
– Previous midterms posted on Piazza.
– Short-answer questions on “non-bonus” (white) slides.
– Calculation questions will focus on assignment topics.
– Topics only appearing in L14 will treated as “bonus”.

Last Week: Linear Regression

• We discussed linear models:

• “Multiply feature xij by weight wj,
add them to get 𝑦i”.

• We discussed squared error function:

• Interactive demo:

– http://setosa.io/ev/ordinary-least-squares-regression

http://www.bloomberg.com/news/articles/2013-01-10/the-dunbar-number-from-the-guru-of-social-networks

http://setosa.io/ev/ordinary-least-squares-regression

Motivation: Large-Scale Least Squares

• Normal equations find ‘w’ with ∇ f(w) = 0 in O(nd2 + d3) time.

– Very slow if ‘d’ is large.

• Alternative when ‘d’ is large is gradient descent methods.

– Probably the most important class of algorithms in machine learning.

Gradient Descent for Finding a Local Minimum

• Gradient descent is an iterative optimization algorithm:

– It starts with a “guess” w0.

– It uses the gradient ∇ f(w0) to generate a better guess w1.

– It uses the gradient ∇ f(w1) to generate a better guess w2.

– It uses the gradient ∇ f(w2) to generate a better guess w3.
…

– The limit of wt as ‘t’ goes to ∞ has ∇ f(wt) = 0.

• It converges to the global optimum if ‘f’ is convex.

Gradient Descent for Finding a Local Minimum

• Gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Gradient Descent for Finding a Local Minimum

• Gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Gradient Descent for Finding a Local Minimum

• Gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Gradient Descent for Finding a Local Minimum

• Gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Gradient Descent for Finding a Local Minimum

• Gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Gradient Descent for Finding a Local Minimum

– We start with some initial guess, w0.

– Generate new guess by moving in the negative gradient direction:

• This decreases ‘f’ if the “step size” 𝛼0 is small enough.

• Usually, we decrease α0 if it increases ‘f’ (see “findMin.jl”).

– Repeat to successively refine the guess:

– Stop if not making progress or

Gradient Descent in 2D

• Under weak conditions, algorithm converges to a ‘w’ with ∇ f(w) = 0.
– ‘f’ is bounded below, ∇ f doesn’t change arbitrarily fast, small and constant αt.

Gradient Descent

• Least squares via normal equations vs. gradient descent:

– Normal equations cost O(nd2 + d3).

– Gradient descent costs O(ndt) to run for ‘t’ iterations.

– Gradient descent can be faster when ‘d’ is very large:

• If solution is “good enough” for a ‘t’ less than minimum(d,d2/n).

• CPSC 540: ‘t’ proportional to “condition number” of XTX (no direct ‘d’ dependence).

– Normal equations only solve linear least squares problems.

• Gradient descent solves many other problems.

Beyond Gradient Descent

• There are many variations on gradient descent.

– Methods employing a “line search” to choose the step-size.

– “Conjugate” gradient and “accelerated” gradient methods.

– Newton’s method (which uses second derivatives).

– Quasi-Newton and Hessian-free Newton methods.

– Stochastic gradient (later in course).

• This course focuses on gradient descent and stochastic gradient:

– They’re simple and give reasonable solutions to most ML problems.

– But the above can be faster for some applications.

(pause)

Least Squares with Outliers

• Consider least squares problem with outliers:

http://setosa.io/ev/ordinary-least-squares-regression

http://setosa.io/ev/ordinary-least-squares-regression

Least Squares with Outliers

• Consider least squares problem with outliers:

• Least squares is very sensitive to outliers.

Least Squares with Outliers

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.

http://students.brown.edu/seeing-theory/regression/index.html

http://students.brown.edu/seeing-theory/regression/index.html

Least Squares with Outliers

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.

– Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.

Robust Regression

• Robust regression objectives put less focus large errors (outliers).

• For example, use absolute error instead of squared error:

• Now decreasing ‘small’ and ‘large’ errors is equally important.

• Instead of minimizing L2-norm, minimizes L1-norm of residuals:

Least Squares with Outliers

• Least squares is very sensitive to outliers.

Least Squares with Outliers

• Absolute error is more robust to outliers:

Regression with the L1-Norm

• Unfortunately, minimizing the absolute error is harder.
– We don’t have “normal equations” for minimizing the L1-norm.

– Absolute value is non-differentiable at 0.

– Generally, harder to minimize non-smooth than smooth functions.
• Unlike smooth functions, the gradient may not get smaller near a minimizer.

– We’re going to use a smooth approximation, then apply gradient descent.

Smooth Approximations to the L1-Norm

• There are differentiable approximations to absolute value.

– Common example is Huber loss:

– Note that ‘h’ is differentiable: h’(ε) = ε and h’(-ε) = -ε.

– This ‘f’ is convex but setting 𝛻f(x) = 0 does not give a linear system.

– But we can minimize the Huber loss using gradient descent.

Motivation for Considering Worst Case

https://xkcd.com/937/

“Brittle” Regression

• What if you really care about getting the outliers right?
– You want best performance on worst training example.

– For example, if in worst case the plane can crash.

• In this case you could use something like the infinity-norm:

• Very sensitive to outliers (“brittle”), but worst case will be better.

Log-Sum-Exp Function

• As with the L1-norm, the L∞-norm is convex but non-smooth:
– We can again use a smooth approximation and fit it with gradient descent.

• Convex and smooth approximation to max function is log-sum-exp function:

– We’ll use this several times in the course.
– Notation alert: when I write “log” I always mean “natural” logarithm: log(e) = 1.

• Intuition behind log-sum-exp:
– ∑𝑖 exp 𝑧𝑖 ≈ max

𝑖
exp(𝑧𝑖), as largest element is magnified exponentially (if no ties).

• While log(exp(zi)) = zi.

Summary

• Gradient descent finds stationary point of differentiable function.
– Finds global optimum if function is convex.

• Robust regression using L1-norm is less sensitive to outliers.

• Brittle regression using Linf-norm is more sensitive to outliers.

• Smooth approximations:
– Let us apply gradient descent to non-smooth functions.

– Huber loss is a smooth approximation to absolute value.

– Log-Sum-Exp is a smooth approximation to maximum.

• Next time:
– We start our quest to automatically find the right features…

Why use the negative gradient direction?

• For a twice-differentiable ‘f’, multivariable Taylor expansion gives:

• If gradient can’t change arbitrarily quickly, Hessian is bounded and:

– But which choice of wt+1 decreases ‘f’ the most?
• As ||wt+1-wt|| gets close to zero, the value of wt+1 minimizing f(wt+1) in this formula

converges to (wt+1 – wt) = - αt ∇ f(wt) for some scalar αt
.

• So if we’re moving a small amount, the optimal wt+1 is:

Normalized Steps

Log-Sum-Exp for Brittle Regression

• To use log-sum-exp for brittle regression:

Log-Sum-Exp Numerical Trick

• Numerical problem with log-sum-exp is that exp(zi) might overflow.

– For example, exp(100) has more than 40 digits.

• Implementation ‘trick’:

Gradient Descent for Non-Smooth?

• “You are unlikely to land on a non-smooth point, so gradient descent
should work for non-smooth problems?”
– Consider just trying to minimize the absolute value function:

– Norm(gradient) is constant when not at 0, so unless you are lucky enough to hit
exactly 0, you will just bounce back and forth forever.

– We didn’t have this problem for smooth functions, since the gradient gets
smaller as you approach a minimizer.

– You could fix this problem by making the step-size slowly go to zero, but you
need to do this carefully to make it work, and the algorithm gets much slower.

Gradient Descent for Non-Smooth?

• Counter-example from Bertsekas’ “Nonlinear Programming” where
gradient descent for a non-smooth convex problem does not
converge to a minimum.

Random Sample Consensus (RANSAC)

• In computer vision, a widely-used generic framework for robust
fitting is random sample consensus (RANSAC).

• This is designed for the scenario where:

– You have a large number of outliers.

– Majority of points are “inliers”:
it’s really easy to get low error on them.

https://en.wikipedia.org/wiki/Random_sample_consensus

Random Sample Consensus (RANSAC)

• RANSAC:
– Sample a small number of training examples.

• Minimum number needed to fit the model.

• For linear regression with 1 feature, just 2 examples.

– Fit the model based on the samples.
• Fit a line to these 2 points.

• With ‘d’ features, you’ll need ‘d’ examples.

– Test how many points are fit well
based on the model.

– Repeat until we find a model that fits at
least the expected number of “inliers”.

• You might then re-fit based on the
estimated “inliers”.

https://en.wikipedia.org/wiki/Random_sample_consensus

