CPSC 340:
Machine Learning and Data Mining

Gradient Descent
Fall 2017

Admin

We will have tutorials on non-holiday days this week.

Assignment 2 is due Friday.
— 1 late day to hand it in on Monday, 2 for Wednesday.
— The “imread” function is in PyPlot (not Images.jl), weird error in findMin.jl (fixed in a2.zip).

Assignment 1 marks are up.
— If you have questions, see “Assignment 1 Marking Thread” on Piazza.

Extra office hours:
— 2 TAs on the Thursday 2-3pm office hours when assignments are due.
— Extra office hours this Friday at 1-2 (Siyuan at Table 2).
— Extra instructor office hours on October 19t 4pm (ICICS 246).

Midterm details:
— In class October 20th (55 minutes).
— 1 page double-sided cheat sheet.
— Previous midterms posted on Piazza.
— Short-answer questions on “non-bonus” (white) slides.
— Calculation questions will focus on assignment topics.
— Topics only appearing in L14 will treated as “bonus”.

Last Week: Linear Regression

We dig\cussed linear models: The Social Cortex
ey - . S : 1,000
y| Vv' X” Mo X a + W"L Xl" As brain size increases, so does
% _ group size. Human group size as
— — | redicted by Dunbar’s model comes
= SN [G out to about 150.
. o= . 2100 # Humans
“Multiply feature x; by weight w;, g Monkeys = @
add them to get y.”. E
. . @ 10
We discussed squared error function: g —
N >
- T 2 <
'F(“‘) T 2 g‘l (w Xi \/,) o
\ - 1
PrechcfQJ va'v\e_d Irae Vq,ue 1x 2Ix 3lx 4'x Slx 6lx

Interactive demo:

Size of neocortex relative to rest of brain

DATA: THE SOCIAL BRAIN HYPOTHESIS, DUNBAR 1998

— http://setosa.io/ev/ordinary-least-squares-regression

A
To (eréic’f on Test case X.
N T '

Use Yi= WX

http://setosa.io/ev/ordinary-least-squares-regression

Motivation: Large-Scale Least Squares

* Normal equations find ‘w’ with V f(w) = 0 in O(nd? + d3) time.
(X = Xy
(~~/ (A~

Dnd?) 0(nd)
(V"‘“ s """/f"{),y> (mateiv ’Wﬂlar)

So/v)m/ a c{*J s\/sffm (s O(J?)

— Very slow if ‘d” is large.

* Alternative when ‘d’ is large is gradient descent methods.
— Probably the most important class of algorithms in machine learning.

Gradient Descent for Finding a Local Minimum

* Gradient descent is an iterative optimization algorithm:
— It starts with a “guess” w®.
— It uses the gradient V f(wP®) to generate a better guess w.
— It uses the gradient V f(w') to generate a better guess w?.
— It uses the gradient V f(w?) to generate a better guess w3.

— The limit of w' as ‘t’ goes to o= has V f(w') = 0.

* |t converges to the global optimum if ‘" is convex.

Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

f)
f(w®)

|

— J

(o) ¥
w w

(Wl{n'wa'z er)

e

Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

F)

Lin@ wi th
$|0f€ V(W)

-

S W WS
§|orc Vf(w()) IS e
negatve so we can decreuse Flw)

IO\/ making 'w' more 'oag}five

Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

F)

(wn.'n'umiz er 7

Sbfe TS ;;cc)‘din negq‘live /(/ Lme wﬂl[a S,O(Je V‘F(W')

5o maKe 'w more ‘:ogﬁive.

Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

f)
f(w’)
‘ NI ="/ w
o v:/o W' W,‘ W} WH

Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

"4

/Vow '“\e, slore V{\(w” 5 posilive

F

So we move in The negative dice ctin

Gradient Descent for Finding a Local Minimum

— We start with some initial guess, w®.
— Generate new guess by moving in the negative gradient direction:

w = w’ = L VFWY)

* This decreases ‘f’ if the “step size” a® is small enough.
* Usually, we decrease o if it increases ‘f’ (see “findMin.jl”).

— Repeat to successively refine the guess:
Sl t -
W-“ = Wt_o(V]C(wt) FOK‘ t").) ?)2),..

— Stop if not making progress or IVE W < 3
L)7 Some Sﬁ'\q“ Sc G/qf.

A (ida poximale local minimum

W, Gradient Descent in 2D

= w? w3
: y
/ \ ‘ \‘\‘M/mmi z£>>
N7 W

K" SJTO\r* "“1

gwcss w

0

* Under weak conditions, algorithm converges to a ‘w’ with V f(w) =

— ‘f” is bounded below, V f doesn’t change arbitrarily fast, small and constant a.

Gradient Descent

* Least squares via normal equations vs. gradient descent:
— Normal equations cost O(nd? + d3).
— Gradient descent costs O(ndt) to run for ‘t’ iterations.
Compuing VFLI=XTHo =Xy ply costs O(nd)
q '\c‘
X %} O(nd)

\ oot
Ol

— Gradient descent can be faster when ‘d’ is very large:
* |f solution is “good enough” for a ‘t’ less than minimum(d,d?/n).
* CPSC 540: ‘t’ proportional to “condition number” of X'™X (no direct ‘d” dependence).

— Normal equations only solve linear least squares problems.

* Gradient descent solves many other problems.

Beyond Gradient Descent

 There are many variations on gradient descent.
— Methods employing a “line search” to choose the step-size.
— “Conjugate” gradient and “accelerated” gradient methods.
— Newton’s method (which uses second derivatives).
— Quasi-Newton and Hessian-free Newton methods.
— Stochastic gradient (later in course).

* This course focuses on gradient descent and stochastic gradient:
— They’re simple and give reasonable solutions to most ML problems.
— But the above can be faster for some applications.

(pause)

Least Squares with Outliers

* Consider least squares problem with outligrs: \
K &= ouflier Thot doesa't ol 7(/’:/‘(4

_”/\is (S WLD# wé

) / M lCC(.S‘f S?(Ah‘fc_s
to do

http://setosa.io/ev/ordinary-least-squares-regression

http://setosa.io/ev/ordinary-least-squares-regression

Least Squares with Outliers

* Consider least squares problem with outligrs: \
K &= ouflier Thot doesa't ol 71/0‘4

/\V Ths 5 what

I{aﬁl Syma/cs
% wl// ac‘fuq”}/ do.

* Least squares is very sensitive to outliers.

/N
Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies largg errors:

Aloﬁo'uft 6rfoc5 gg_v\ar{;cj

rrors

LeaS‘f Symn/ej R
minimniZes

vertial dis f’amN
S_(I\uve.l'

\M%\ “l‘H'('l'I'l\pl l.\t.cnn.J.r

e Qutliers (large error) influence ‘w” much more than other points.

http://students.brown.edu/seeing-theory/regression/index.html

http://students.brown.edu/seeing-theory/regression/index.html

Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies large errors:

K

-

[t]]]]|

e Qutliers (large error) influence ‘w” much more than other points.
— Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.

A[oSolque érrog

llltlul)“

——

SMJ

evvrorsS

/l'nm/)/}

N

SYyUm 6{\ fi‘l@ §

!

Srmo,//et‘

Tha
For The

C owrec7
))nc .

Robust Regression

Robust regression objectives put less focus large errors (outliers).
For example, use absolute error instead of squared error:

n
L
1[\(\,\,)‘5'2)\4/ Xi }’ll
1=
Now decreasing ‘small’ and ‘large’ errors is equally important.

Instead of minimizing L2-norm, minimizes L1-norm of residuals:

Lea\ﬂ' éc/ nares’ Le ast absol ufe error
= = 2 = -
7C(W) -i ”)(w y” 1[‘(w> “Xw y”,

Least Squares wiIh Outliers

* Least squares is very sensitive to outlfers.

W s

.

'\ Simaru(

rrors

Llr\ear moclcl w (m/ﬂ:M am& 1{'\ w)- - ")(w yl

SMJ

evvorS

/lmu//)/l

Least Squares with Outliers

e Absolute error is more robust to outliers:

e A\Oﬁolu\ff érror_s Absoluﬂle 6:’/09

ol L el

A
Lir\ear model ‘W' m/'n)m(ziw\)t F(w): ”)(w" yl/, = -f '\IVIX,' e /ll

—

Regression with the L1-Norm

* Unfortunately, minimizing the absolute error is harder.
— We don’t have “normal equations” for minimizing the L1-norm.
— Absolute value is non-differentiable at 0.

||
L vvfr,f*y/-

-
O
— Generally, harder to minimize non-smooth than smooth functions.
* Unlike smooth functions, the gradient may not get smaller near a minimizer.

— We're going to use a smooth approximation, then apply gradient descent.

Smooth Approximations to the L1-Norm

* There are differentiable approximations to absolute value.

— Common example is Huber loss: .

() = ék(wTK ~v)

. | : \- 0
) = 2 - ! \/—v/
hir) E(In]=5&) oo A e

Sguaroé error near zeh, dway from zero.

— Note that ‘h’ is differentiable: h’(€) = € and h’(-¢) = -¢.
— This ‘f’ is convex but setting Vf(x) = 0 does not give a linear system.
— But we can minimize the Huber loss using gradient descent.

Motivation for Considering Worst Case

-‘-! Frow Dm&m:m

PLAYS A LOUD ALERT SOUND
WHEN THERE 1S A TORNADO
WARNING FOR YOUR AREA.

RANG: SN A

USER REVEWS:

sokkAk GOco DI
MANY ALERT CHOIES.

GREAT, NO CRASHES

mﬂtﬁ:ﬂmm
SET MUCTIPLE LDCATIONG

E*ﬁm mi%

THE PROBLEM WIMTH
AVERAGING STAR RATINGS

https://xkcd.com/937/

“Brittle” Regression

* What if you really care about getting the outliers right?
— You want best performance on worst training example.
— For example, if in worst case the plane can crash.

* |n this case you could use something like the infinity-norm:

?(w)f H)(w‘ yl)o@ X where “r“ot,: YVW,U(g |/‘,,;

X
X XXX ¥ .
)<)<X
* Very sensitive to outliers (“brittle”), but worst case will be better.

Log-Sum-Exp Function

* As with the L;-norm, the L_-norm is convex but non-smooth:
— We can again use a smooth approximation and fit it with gradient descent.

 Convex and smooth approximation to max function is log-sum-exp function:

m\m’(gziz //\\j Ioac ZiexF(Zif)

— We’'ll use this several times in the course.
— Notation alert: when | write “log” | always mean “natural” logarithm: log(e) = 1.

* Intuition behind log-sum-exp:
— D exp(z;) = Max exp(z;), as largest element is magnified exponentially (if no ties).
l
* While log(exp(z)) = z.

Summary

Gradient descent finds stationary point of differentiable function.
— Finds global optimum if function is convex.

Robust regression using L1-norm is less sensitive to outliers.
Brittle regression using Linf-norm is more sensitive to outliers.

Smooth approximations:

— Let us apply gradient descent to non-smooth functions.
— Huber loss is a smooth approximation to absolute value.
— Log-Sum-Exp is a smooth approximation to maximum.

Next time:
— We start our quest to automatically find the right features...

Why use the negative gradient direction?

* For a twice-differentiable ‘t, multivariable Taylor expansion gives:
P = Pl £ T) 14 P

Y
'F"f Some V! beTween
Wt+’ Onl Wt

e If gradient can’t change arbitrarily quickly, Hessian is bounded and:

L= F(.t)+ Vf(wt)_r(wtu W& + (I - wt//2>
N

loffome) n6957i19/e oS W

of
— But which choice of wt*! decreases ‘f’ the most? 9% Close wt

o As | |wtl-wt|| gets close to zero, the value of wt*! minimizing f(w'*1) in this formula
converges to (w**! —wt!) = - a' V f(w!) for some scalar ot

* So if we’re moving a small amount, the optimal w1 is: \,Vf" | - \«/£ — o(tV‘P(wt) ‘Fw Some
SCQ[W 0‘1;‘

41

Normalized Steps

. / 'é'//: fs‘_,— VP f \
QW)’,/'W\ from closss “can we we w w 9aof (W)

TL\\S Wi ” wor ¢ Po{ Q \,ulai/e) LJV‘, Y\ofi(ﬂ ﬁ“#

[T u L N

1N,
waf)u 13

=

So Tre ulgari"‘\m never comverges

Log-Sum-Exp for Brittle Regression

* To use log-sum-exp for brittle regression:

”Xw"‘/" - malz w'x; ‘7’5
g WZM,,,X%W” Yir) w% Srce 2] 7 murfz o
_ '@9(23’({’(‘” Y \/) + éeyf(y, w Y)) (AS/'/k]l Io’ Sum™érp

10 foro)(Wq\/f

“mex over An Toms

Log-Sum-Exp Numerical Trick

* Numerical problem with log-sum-exp is that exp(z,) might overflow.
— For example, exp(100) has more than 40 digits.

* Implementation ‘trick’: [t p= max 32,3

l(ycj(?(&(/)(2.,')) = qu(? CX/O(Z,' —-,2 +Ig))

= 04 (2\ ex,o(Z;"ﬁ)e//o ()

= log Cenp () Z exp(2;-p))

= l“ﬁ (exf(,@)) + loas(%exf(z;bﬁ))

— [} -+ loa(ziexf(?—i'ﬂ) S| sOO\/f’/r%OV

Gradient Descent for Non-Smooth?

* “You are unlikely to land on a non-smooth point, so gradient descent
should work for non-smooth problems?”

— Consider just trying to minimize the absolute value function:

)
— Norm(gradient) is constant when not at 0, so unless you are lucky enough to hit
exactly 0, you will just bounce back and forth forever.

— We didn’t have this problem for smooth functions, since the gradient gets
smaller as you approach a minimizer.

— You could fix this problem by making the step-size slowly go to zero, but you
need to do this carefully to make it work, and the algorithm gets much slower.

Gradient Descent for Non-Smooth?

)

* Counter-example from Bertsekas’ “Nonlinear Programming” where
gradient descent for a non-smooth convex problem does not
converge to a minimum.

)
\ug mer:lés ',0 l'we, (ewn "L"‘“‘ﬂ‘ ‘funn’zbn
Y4
\N\\Y\M wert § (S (6VWe)()
N ———
H1
rméﬁé%

Figure 6.3.8. Contours and steepest ascent path for the function of Exercise
6.3.8.

Random Sample Consensus (RANSAC)

* |n computer vision, a widely-used generic framework for robust
fitting is random sample consensus (RANSAC).

* This is designed for the scenario where: « o

— You have a large number of outliers. ’ E o

— Majority of points are “inliers”:
it’s really easy to get low error on them. - . @ .

Random Sample Consensus (RANSAC)

* RANSAC: Linear rw,m;;,'a,. L«,,J
. on “H(
— Sample a small number of training examples. < ’z%-[é".
* Minimum number needed to fit the model. o .

* For linear regression with 1 feature, just 2 examples.

— Fit the model based on the samples.
* Fit a line to these 2 points.
* With ‘d’ features, you’ll need ‘d” examples.

— Test how many points are fit well
based on the model.

— Repeat until we find a model that fits at
least the expected number of “inliers”.

* You might then re-fit based on the
estimated “inliers”.

