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Gradient and Critical Points in d-Dimensions

• Generalizing “set the derivative to 0 and solve” in d-dimensions:

– Find ‘w’ where the gradient vector equals the zero vector.

• Gradient is vector with partial derivative ‘j’ in position ‘j’: 

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml



Least Squares Partial Derivatives

• The linear least squares model in d-dimensions minimizes:

• Computing the partial derivative:
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:

– We use ‘y’ as an “n times 1” vector containing target ‘yi’ in position ‘i’.

– We use ‘xi’ as a “d times 1” vector containing features ‘j’ of example ‘i’.

• We’re now going to be careful to make sure these are column vectors.

– So ‘X’ is a matrix with the xi
T in row ‘i’.
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– Our prediction for example ‘i’ is given by scalar wTxi.

– The matrix-vector product Xw gives predictions for all ‘i’ (n times 1 vector).



Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:

– Our prediction for example ‘i’ is given by scalar wTxi.

– The matrix-vector product Xw gives predictions for all ‘i’ (n times 1 vector).

– The residual vector r gives wTxi minus yi for all ‘i’ (n times 1 vector).

– Least squares can be written as the squared L2-norm of the residual.



Matrix Algebra Review (MEMORIZE/STUDY THIS)

• Review of linear algebra operations we’ll use:

– If ‘a’ and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:



Linear Least Squares



Linear and Quadratic Gradients

• We’ve written as a d-dimensional quadratic:

• How do we compute gradient?



Linear and Quadratic Gradients

• We’ve written as a d-dimensional quadratic:

• Gradient is given by:

• Using definitions of ‘A’ and ‘b’:



Normal Equations

• Set gradient equal to zero to find the “critical” points:

• We now move terms not involving ‘w’ to the other side:

• This is a set of ‘d’ linear equations called the normal equations.

– This a linear system like “Ax = b” from Math 152.

• You can use Gaussian elimination to solve for ‘w’.

– In Julia, the “\” command can be used to solve linear systems:



Incorrect Solutions to Least Squares Problem



Least Squares Issues

• Issues with least squares model:

– Solution might not be unique.

– It is sensitive to outliers.

– It always uses all features.

– Data can might so big we can’t store XTX.

– It might predict outside range of yi values.

– It assumes a linear relationship between xi and yi.



Non-Uniqueness of Least Squares Solution

• Why isn’t solution unique?

– Imagine have two features that are identical for all examples.

– This is special case of features being “collinear”

• One feature is a linear function of another.

– I can increase weight on one feature, and decrease it on the other,
without changing predictions.

– Thus, if (w1,w2) is a solution then (w1+w2, 0) is a solution.

• But, any ‘w’ where ∇ f(w) = 0 is a global optimum, due to convexity.



Convex Functions

• Is finding a ‘w’ with ∇f(w) = 0 good enough?

– Yes, for convex functions.

• A function is convex if the area above the function is a convex set.

– All values between any two points above function stay above function.



Convex Functions

• All ‘w’ with ∇ f(w) = 0 for convex functions are global minima.

– Normal equations finds a global minimum because of convexity.



How do we know if a function is convex?

• Some useful tricks for showing a function is convex:

– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
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How do we know if a function is convex?

• Some useful tricks for showing a function is convex:

– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.

– A convex function multiplied by non-negative constant is convex.

– Norms and squared norms are convex.

– The sum of convex functions is a convex function.

– The max of convex functions is a convex function.

– Composition of a convex function and a linear function is convex.

• But: not true that composition of convex with convex is convex:



Example: Convexity of Linear Regression

• Consider linear regression objective with squared error:

• We can use that this is a convex function composed with linear:



Summary

• Normal equations: solution of least squares as a linear system.

– Solve (XTX)w = (XTy).

• Solution might not be unique because of collinearity.

• But any solution is optimal because of convexity.

• Convex functions:

– Set of functions with property that ∇ f(w) = 0 implies ‘w’ is a global min.

– Can (usually) be identified using a few simple rules.

• Next time: overview of numerical optimization concepts.



Convexity, min, and argmin

• If a function is convex, then all stationary points are global optima.

• However, convex functions don’t necessarily have stationary points:

– For example, f(x) = a*x, f(x) = exp(x), etc.

• Also, more than one ‘x’ can achieve the global optimum:

– For example, f(x) = c is minimized by any ‘x’.



Bonus Slide: Householder(-ish) Notation

• Househoulder notation: set of (fairly-logical) conventions for math.
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When does least squares have a unique solution?

• We said that least squares solution is not unique if we have repeated 
columns.

• But there are other ways it could be non-unique:
– One column is a scaled version of another column.

– One column could be the sum of 2 other columns.

– One column could be three times one column minus four times another.

• Least squares solution is unique if and only if all columns of X are 
“linearly independent”.
– No column can be written as a “linear combination” of the others.

– Many equivalent conditions (see Strang’s linear algebra book):
• X has “full column rank”, XTX is invertible, XTX has non-zero eigenvalues, det(XTX) > 0.

– Note that we cannot have independent columns if d > n.


