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Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘w” where the gradient vector equals the zero vector.

* Gradient is vector with partial derivative ‘j’ in position j’:
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Least Squares Partial Derivatives
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Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘w” where the gradient vector equals the zero vector.

* Gradient is vector with partial derivative ‘j’ in position j’:
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

/

— We use ‘y’ as an “n times 1” vector containing target ‘y.’ in position .

— We use ‘x.” as a “d times 1" vector containing features ‘j’ of example .

* We’re now going to be careful to make sure these are column vectors.

— So ‘X’ is a matrix with the x," in row ‘V’.
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:
— Our prediction for example ‘i’ is given by scalar w'x..

— The matrix-vector product Xw gives predictions for all ‘i’ (n times 1 vector).
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

— Our prediction for example ‘i’ is given by scalar w'x..

— The matrix-vector product Xw gives predictions for all ‘i’ (n times 1 vector).

— The residual vector r gives w'x. minus v. for all ‘i’ (n times 1 vector).
| |

— Least squares can be written as the squared L2-norm of the residual.
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Matrix Algebra Review (MEMORIZE/STUDY THIS)

* Review of linear algebra operations we’ll use:

— If ‘@’ and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:
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Linear Least Squares

Want “w' fhd minimizcs
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Linear and Quadratic Gradients

 We’ve written as a d-dimensional quadratic:
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Linear and Quadratic Gradients

* We've written as a d dimensional quadratic:
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Normal Equations

* Set gradient equal to zero to find the “critical” points:
i T
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 We now move terms not involving ‘w’ to the other side:
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* Thisis a set of ‘d’ linear equations called the normal equations.
— This a linear system like “Ax = b” from Math 152.

* You can use Gaussian elimination to solve for ‘w’.

— In Julia, the “\” command can be used to solve linear systems:
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Incorrect Solutions to Least Squares Problem
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Least Squares Issues

* |ssues with least squares model: .
o . X is nxd
— Solution might not be unique. .
. L . s dx
— |t is sensitive to outliers. so KIS dxn
"l .
— It always uses all features. and XX is Jxd

— Data can might so big we can’t store X"X. -
— It might predict outside range of y, valueS\/
— It assumes a linear relationship between x, and y
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Non-Uniqueness of Least Squares Solution

* Why isn’t solution unique?
— Imagine have two features that are identical for all examples.
— This is special case of features being “collinear”

* One feature is a linear function of another.

— | can increase weight on one feature, and decrease it on the other,

without changing predictions. A _
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— Thus, if (w,,w,) is a solution then (w,+w,, 0) is a solution.

e But, any ‘W’ where V f(w) =0 is a global optimum, due to convexity.



/ (L /]
Convex Functions //// ///
* |s finding a ‘w’ with Vf(w) = 0 good enough? //

— Yes, for convex functions.

lavaa

A function is convex if the area above the function is a convex set.
— All values between any two points above function stay above function.



Convex Functions

* All ‘w” with V f(w) = 0 for convex functions are global minima.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.

We showed That Fw)=e™ is LonveX, SO () = 0™ is convey.



How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f”’(w) = O for all ‘w’

— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f’(w) > 0 for all ‘w’.§

— A convex function multiplied by non-negative constant is convex.

— Norms and squared norms are convex.

— The sum of convex functions is a convex functiop. \ y_-zv
— The max of convex functions is a convex function.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.
— Composition of a convex function and a linear function is convex.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.
— Composition of a convex function and a linear function is convex.
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Example: Convexity of Linear Regression

* Consider linear regression objective with squared error:
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* We can use that this is a convex function composed with linear:
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Summary

Normal equations: solution of least squares as a linear system.
— Solve (X™X)w = (XTy).

Solution might not be unique because of collinearity.

But any solution is optimal because of convexity.

Convex functions:
— Set of functions with property that V f(w) = 0 implies ‘W’ is a global min.
— Can (usually) be identified using a few simple rules.

Next time: overview of numerical optimization concepts.



Convexity, min, and argmin

e |f a function is convex, then all stationary points are global optima.

* However, convex functions don’t necessarily have stationary points:
— For example, f(x) = a*x, f(x) = exp(x), etc.

* Also, more than one X’ can achieve the global optimum:

— For example, f(x) = c is minimized by any ‘X



Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math.
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Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math:
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When does least squares have a unique solution?

We said that least squares solution is not unique if we have repeated
columns.

But there are other ways it could be non-unique:

— One column is a scaled version of another column.

— One column could be the sum of 2 other columns.

— One column could be three times one column minus four times another.

Least squares solution is unique if and only if all columns of X are
“linearly independent”.
— No column can be written as a “linear combination” of the others.

— Many equivalent conditions (see Strang’s linear algebra book):
* X has “full column rank”, X™X is invertible, X"™X has non-zero eigenvalues, det(X"X) > 0.

— Note that we cannot have independent columns if d > n.



