CPSC 340: Machine Learning and Data Mining

Ordinary Least Squares Fall 2017

Admin

- You can submit A1 with late day on Monday night.
- You can submit A2 with 2 late days on Wednesday night.
- Mark's office hours will be cancelled on Tuesday (since he's away).

Supervised Learning Round 2: Regression

• We're going to revisit supervised learning:

• Previously, we considered classification:

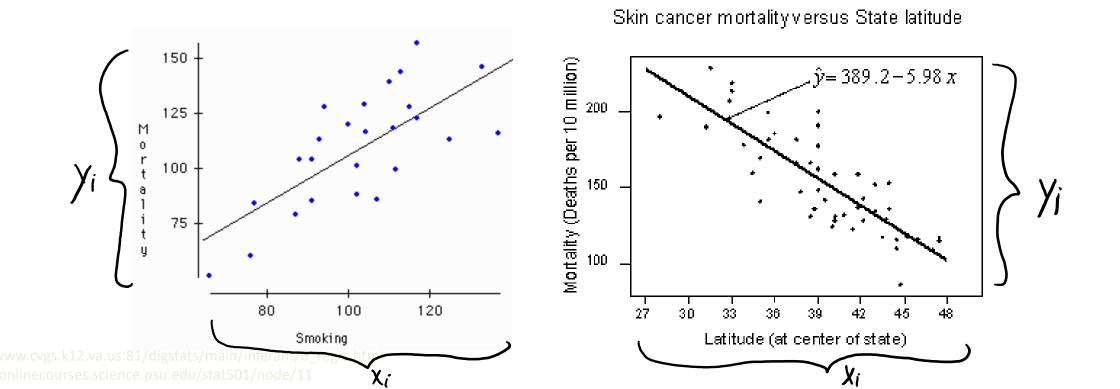
- We assumed y_i was discrete: y_i = 'spam' or y_i = 'not spam'.

• Now we're going to consider regression:

- We allow y_i to be numerical: $y_i = 10.34$ cm.

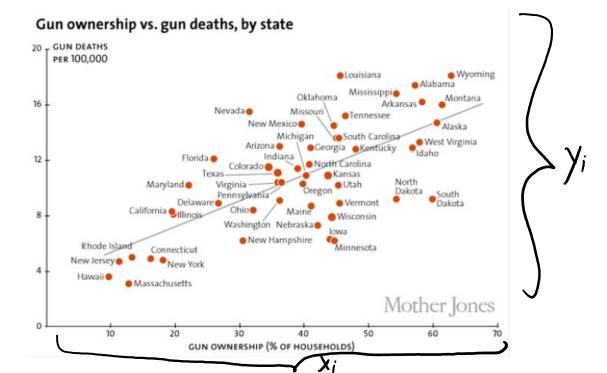
Example: Dependent vs. Explanatory Variables

- We want to discover relationship between numerical variables:
 - Does number of lung cancer deaths change with number of cigarettes?
 - Does number of skin cancer deaths change with latitude?



Example: Dependent vs. Explanatory Variables

- We want to discover relationship between numerical variables:
 - Does number of lung cancer deaths change with number of cigarettes?
 - Does number of skin cancer deaths change with latitude?
 - Does number of gun deaths change with gun ownership?



Handling Numerical Labels

- One way to handle numerical y_i: discretize.
 - E.g., for 'age' could we use {'age ≤ 20 ', '20 < age ≤ 30 ', 'age > 30'}.
 - Now we can apply methods for classification to do regression.
 - But coarse discretization loses resolution.
 - And fine discretization requires lots of data.
- There exist regression versions of classification methods:
 - Regression trees, probabilistic models, non-parametric models.
- Today: one of oldest, but still most popular/important methods:
 - Linear regression based on squared error.
 - Very interpretable and the building block for more-complex methods.

Linear Regression in 1 Dimension

- Assume we only have 1 feature (d = 1):
 - E.g., x_i is number of cigarettes and y_i is number of lung cancer deaths.
- Linear regression makes predictions \hat{y}_i using a linear function of x_i :

$$\gamma_i = w x_i$$

- The parameter 'w' is the weight or regression coefficient of x_i.
- As x_i changes, slope 'w' affects the rate that \hat{y}_i increases/decreases:
 - Positive 'w': \hat{y}_i increase as x_i increases.
 - Negative 'w': \hat{y}_i decreases as x_i increases.

Linear Regression in 1 Dimension

line $\hat{y}_i = wx_i$ for a particular slope w? 0,000 Xi

Aside: terminology woes

- Different fields use different terminology and symbols.
 - Data points = objects = examples = rows = observations.
 - Inputs = predictors = features = explanatory variables= regressors = independent variables = covariates = columns.
 - Outputs = outcomes = targest = response variables = dependent variables (also called a "label" if it's categorical).
 - Regression coefficients = weights = parameters = betas.
- With linear regression, the symbols are inconsistent too:
 - In ML, the data is X and the weights are w.
 - In statistics, the data is X and the weights are β .
 - In optimization, the data is A and the weights are x.

• Our linear model is given by:

$$\gamma_i = w x_i$$

- But we can't use the same error as before:

- Even if data comes from a linear model but has noise,
we can have
$$\hat{y_i} \neq y_i$$
 for all training examples 'i' for the "best" model

- We need a way to evaluate numerical error.
- Classic way is setting slope 'w' to minimize sum of squared errors:

$$f(w) = \sum_{i=1}^{n} (wx_i - y_i)^2$$

$$f(w) = \sum_{i=1}^{n} (wx_i - y_i)^2$$

$$f(w) = \sum_{i=1}^{n} (wx_i - y_i)^2$$

$$f(w) = \sum_{i=1}^{n} (y_i - y_i)^2$$

$$f(w) = \sum_{i=1}^{n} (y_i - y_i)^2$$

$$f(w) = \sum_{i=1}^{n} (y_i - y_i)^2$$

$$f(w) = \int (y_i - y_i)^2$$

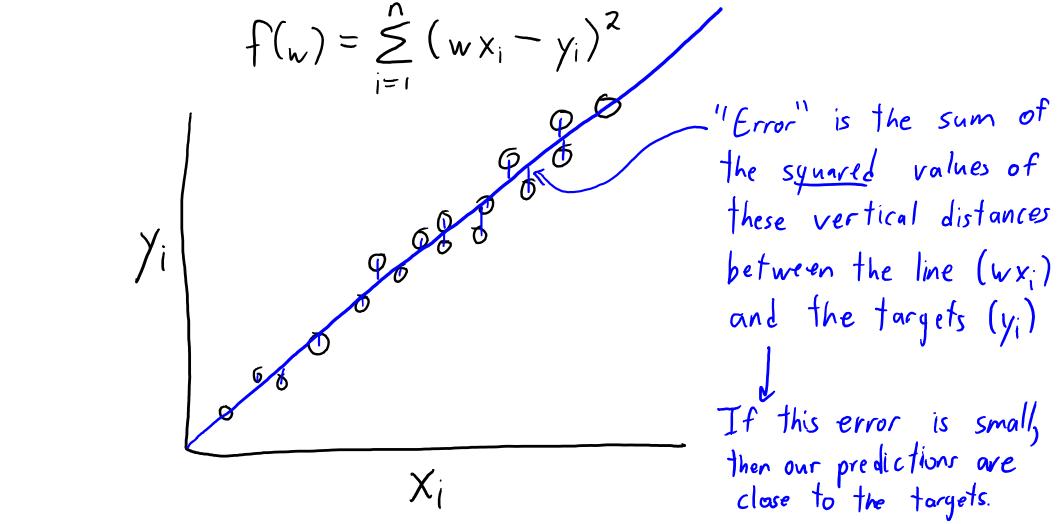
$$f(w) =$$

• There are some justifications for this choice.

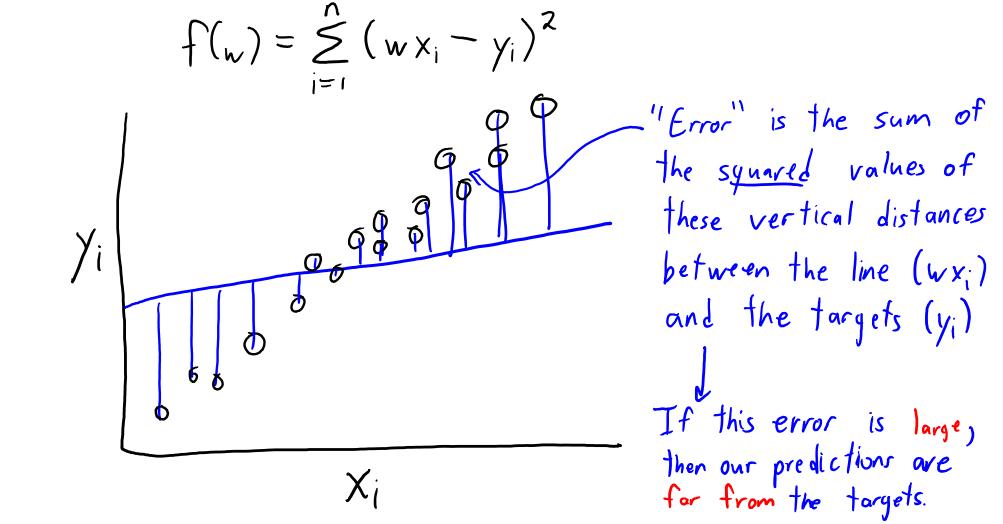
A probabilistic interpretation is coming later in the course.

But usually, it is done because it is easy to minimize.

• Classic way to set slope 'w' is minimizing sum of squared errors:

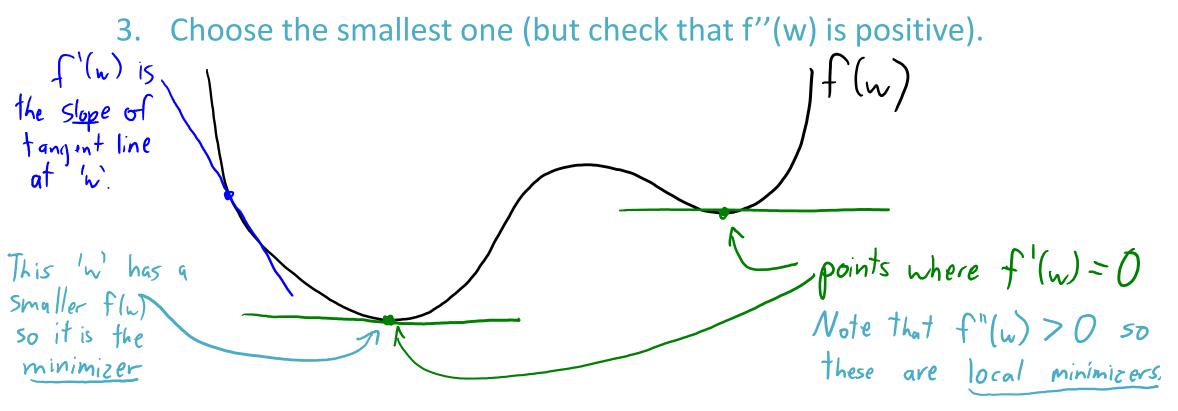


• Classic way to set slope 'w' is minimizing sum of squared errors:



Minimizing a Differential Function

- Math 101 approach to minimizing a differentiable function 'f':
 - 1. Take the derivative of 'f'.
 - 2. Find points 'w' where the derivative f'(w) is equal to 0.



Digression: Multiplying by a Positive Constant

• Note that this problem:

$$f(w) = \sum_{i=1}^{n} (w x_i - y_i)^2$$

• Has the same set of minimizers as this problem:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2$$

• And these also have the same minimizers:

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} (wx_i - y_i)^2 \qquad f(w) = \frac{1}{2n} \sum_{i=1}^{n} (wx_i - y_i)^2 + 1000$$

- I can multiply 'f' by any positive constant and not change solution.
 - Gradient will still be zero at the same locations.
 - We'll use this trick a lot!

Finding Least Squares Solution

• Finding 'w' that minimizes sum of squared errors:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2 = \frac{1}{2} (w x_i - y_i)^2 + \frac{1}{2} (w x_2 - y_2)^2 + \dots + \frac{1}{2} (w x_n - y_n)^2$$

$$f^{(i)}(w) = \sum_{i=1}^{n} (w x_i - y_i) x_i = (w x_1 - y_1) x_1 + (w x_2 - y_2) x_2 + \dots + (w x_n - y_n) x_n$$
Set $f^{(i)}(w) = 0$; $\sum_{i=1}^{n} (w x_i - y_i) x_i = 0$ or $\sum_{i=1}^{n} [w x_i^2 - y_i x_i] = 0$

Is this a minimizer?
$$f^{(i)}(w) = \sum_{i=1}^{n} x_i^2$$
Since (anything)² is non-negative, $f^{(i)}(w) \ge 0$.
If at least one $x_i \ne 0$ then $f^{(i)}(w) \ge 0$ and this is a minimizer.
$$g(w) = \sum_{i=1}^{n} x_i^{(x_i)} = \sum_{i=1}^{n} x_i^{(x_i)} = 0$$

Motivation: Combining Explanatory Variables

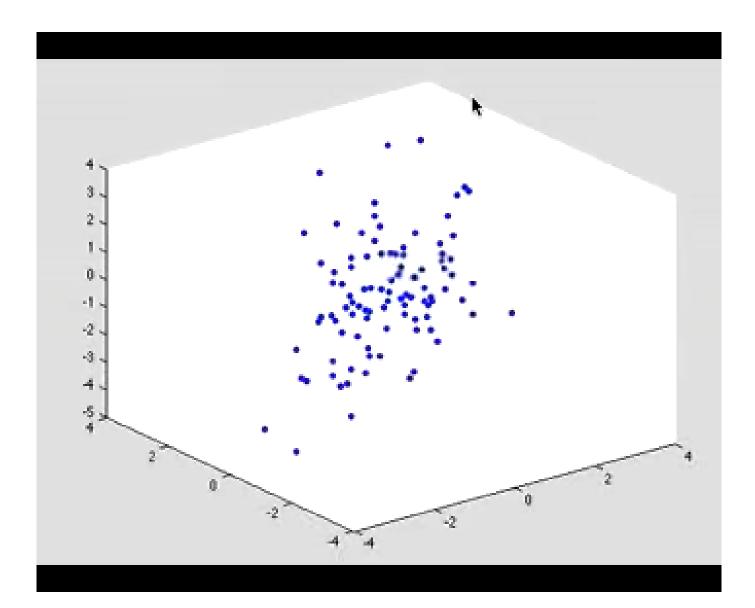
- Smoking is not the only contributor to lung cancer.
 - For example, environmental factors like exposure to asbestos.
- How can we model the combined effect of smoking and asbestos?
- A simple way is with a 2-dimensional linear function:

$$\hat{y}_{i} = W_{1} X_{i1} + W_{2} X_{i2} \qquad \forall alue of feature 2 in example 'i' weight" of feature 1 \vert value of feature 1 in example 'i'$$

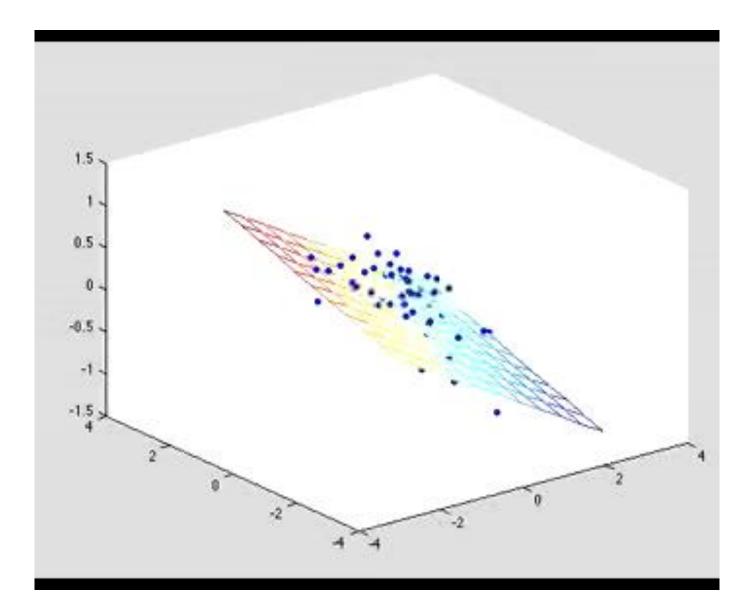
• We have a weight w_1 for feature '1' and w_2 for feature '2':

$$y'_{i} = 10(\# cigarettes) + 25(\# asbetos)$$

Least Squares in 2-Dimensions

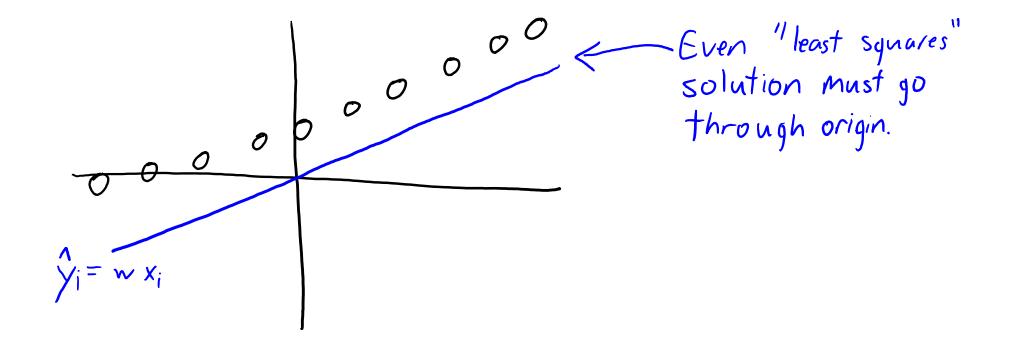


Least Squares in 2-Dimensions



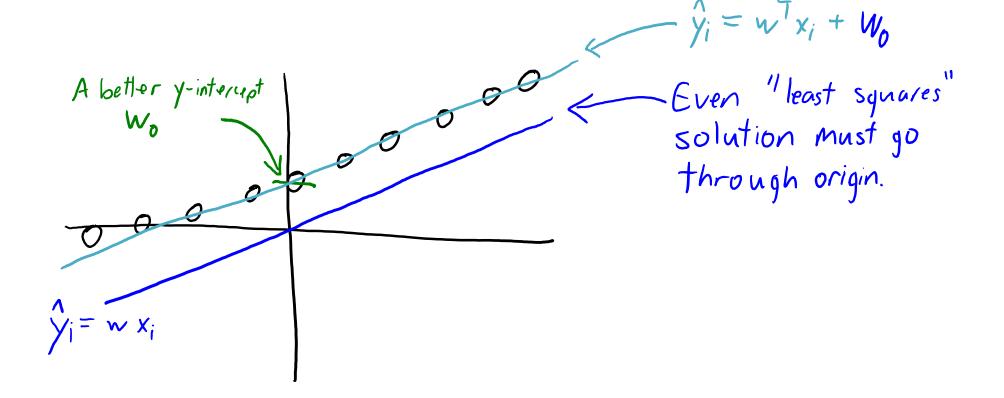
Why don't we have a y-intercept?

- Linear model is $\hat{y}_i = wx_i$ instead of $\hat{y}_i = wx_i + w_0$ with y-intercept w_0 .
- Without an intercept, if $x_i = 0$ then we must predict $\hat{y}_i = 0$.



Why don't we have a y-intercept?

- Linear model is $\hat{y}_i = wx_i$ instead of $\hat{y}_i = wx_i + w_0$ with y-intercept w_0 .
- Without an intercept, if $x_i = 0$ then we must predict $\hat{y}_i = 0$.



Adding

ixes this

Adding a Bias Variable

- Simple trick to add a y-intercept ("bias") variable:
 - Make a new matrix "Z" with an extra feature that is always "1".

$$X = \begin{bmatrix} -0.1 \\ 0.3 \\ 0.2 \end{bmatrix} \qquad \qquad Z = \begin{bmatrix} 1 & -0.1 \\ 1 & 0.3 \\ 1 & 0.2 \end{bmatrix}$$

- Now use "Z" as your features in linear regression.
 - We'll use 'v' instead of 'w' as regression weights when we use features 'Z'.

$$\dot{y}_{i} = V_{1} Z_{i1} + V_{2} Z_{i2} = W_{0} + W_{1} X_{i1}$$

$$\int_{W_{0}} \int_{W_{1}} \int_{W_{1}} \int_{X_{1}} \int_{X_{1}} \int_{W_{1}} \int_{X_{1}} \int_{X_{1}} \int_{W_{1}} \int_{X_{1}} \int_{W_{1}} \int_{X_{1}} \int_{X_{1}} \int_{W_{1}} \int_{X_{1}} \int_{X_{1}} \int_{W_{1}} \int_{W_{1$$

- So we can have a non-zero y-intercept by changing features.
 - This means we can ignore the y-intercept in our derivations, which is cleaner.

Least Squares in d-Dimensions

- If we have 'd' features, the d-dimensional linear model is: $\hat{y}_{i} = W_{1} X_{i1} + W_{2} X_{i2} + W_{3} X_{i3} + \dots + W_{d} X_{id}$
- We can re-write this in summation notation: ullet

$$\hat{y}_i = \sum_{i=1}^d w_i x_{ij}$$

We can also re-write this in vector notation: ullet

In words, our model is that the output is a weighted sum of the inputs. •

Notation Alert (again)

• In this course, all vectors are assumed to be column-vectors:

$$W = \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{d} \end{bmatrix} \qquad Y = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} \qquad X_{i} = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{bmatrix}$$

So $w^{T}x_{i}$ is a scalar:
$$W^{T}x_{i} = \begin{bmatrix} w_{1} & w_{2} & \cdots & w_{d} \end{bmatrix} \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{bmatrix} = w_{1}x_{i1} + w_{2}x_{i2} + \cdots + w_{d}x_{id}$$
$$= \int_{y_{i}=1}^{d} w_{j}x_{id}$$

• So rows of 'X' are actually transpose of column-vector x_i:

$$\chi = \begin{bmatrix} -x_1 \\ -x_2 \\ \vdots \\ \vdots \\ x_n^{T} \end{bmatrix}$$

Least Squares in d-Dimensions

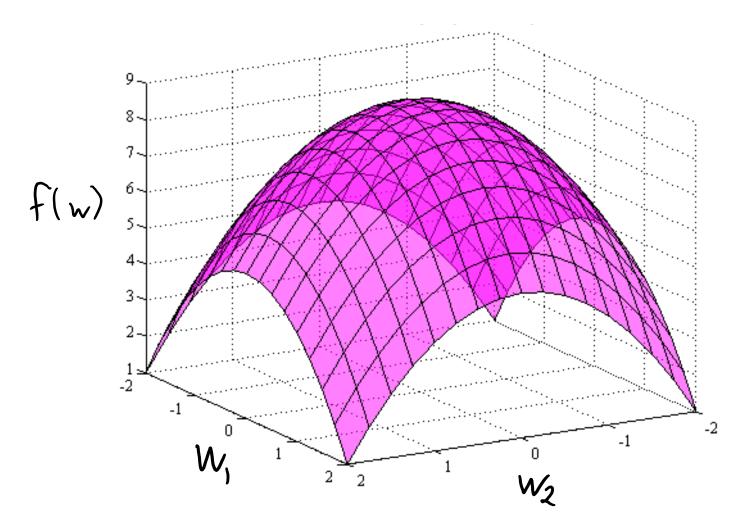
• The linear least squares model in d-dimensions minimizes:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2}$$

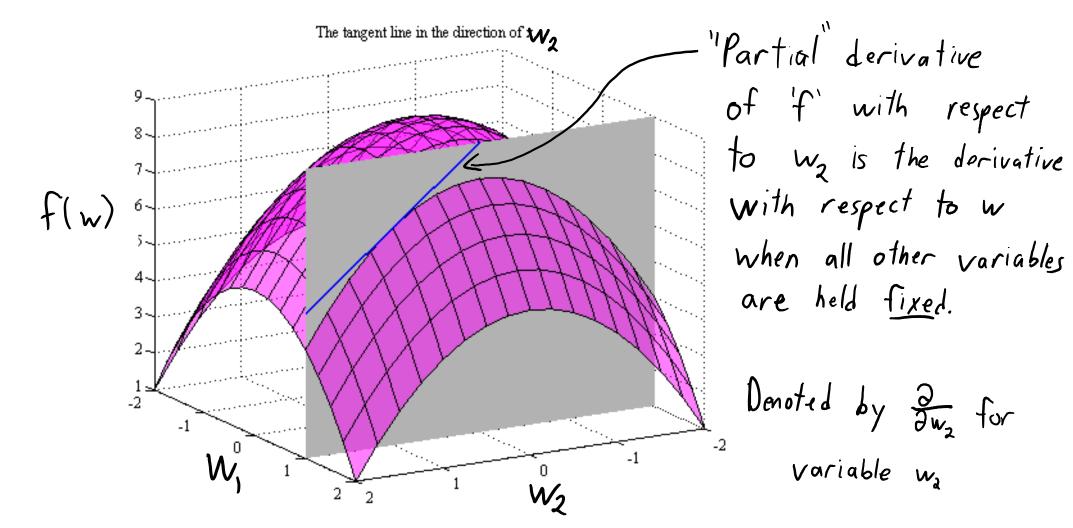
$$\int (w^{T}x_{i} - y_{i})^{2} \int (w^{T}x_{i} - y_{$$

- How do we find the **best vector** 'w'?
 - Set the derivative of each variable ("partial derivative") to 0?

Partial Derivatives



Partial Derivatives



Summary

- Regression considers the case of a numerical y_i.
- Least squares is a classic method for fitting linear models.
 With 1 feature, it has a simple closed-form solution.
- Gradient is vector containing partial derivatives of all variables.

• Next time:
minimizing
$$\frac{1}{2} \sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2}$$
 in terms of w' is:
 $W = (\chi' \chi) \setminus (\chi' \gamma)$
(in Julia)