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Admin

• Assignment 1 is due tonight.

– 1 late day to hand in Monday, 2 late days for Wednesday.

• Assignment 2 will be up soon.

– Start early.

• We’ll start using gradients and linear algebra next week:

– Many people get lost when we get to this material.

– If you aren’t comfortable with these, start reviewing/practicing!



Last Time: Outlier Detection

• We discussed outlier detection:

– Identifying “unusually” different objects.

– Hard to precisely define.

• We discussed 3 common approaches:

– Fit a model, see if points fit the model.

– Plot the data, and look for weird points.

– Cluster the data, and see if points don’t cluster.



Distance-Based Outlier Detection

• Most outlier detection approaches are based on distances.

• Can we skip model/plot/clustering and just measure distances?

– How many points lie in a radius ‘epsilon’?

– What is distance to kth nearest neighbour?

• UBC connection (first paper on this topic):



Global Distance-Based Outlier Detection: KNN

• KNN outlier detection:

– For each point, compute the average distance to its KNN.

– Sort the set of ‘n’ average distances.

– Choose the biggest values as outliers.

• Filter out points that are far from their KNNs.

• Goldstein and Uchida [2016]:

– Compared 19 methods on 10 datasets.

– KNN best for finding “global” outliers.

– “Local” outliers best found with local
distance-based methods…

http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0152173



Local Distance-Based Outlier Detection

• As with density-based clustering, problem with differing densities:

• Outlier o2 has similar density as elements of cluster C1.

• Basic idea behind local distance-based methods:

– Outlier o2 is “relatively” far compared to its neighbours.

http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf



Local Distance-Based Outlier Detection

• “Outlierness” ratio of example ‘i’:

• If outlierness > 1, xi is further away from neighbours than expected.

http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
https://en.wikipedia.org/wiki/Local_outlier_factor



Problem with Unsupervised Outlier Detection

• Why wasn’t the hole in the ozone layer discovered for 9 years?

• Can be hard to decide when to report an outler:

– If you report too many non-outliers, users will turn you off.

– Most antivirus programs do not use ML methods (see "base-rate fallacy“)

https://en.wikipedia.org/wiki/Ozone_depletion

http://www.raid-symposium.org/raid99/PAPERS/Axelsson.pdf


Supervised Outlier Detection

• Final approach to outlier detection is to use supervised learning:
• yi = 1 if xi is an outlier.

• yi = 0 if xi is a regular point.

• We can use our methods for supervised learning:

– We can find very complicated outlier patterns.

– Classic credit card fraud detection methods used decision trees.

• But it needs supervision:

– We need to know what outliers look like.

– We may not detect new “types” of outliers.



(pause)



Motivation: Product Recommendation

• A customer comes to your website looking to buy at item:

• You want to find similar items that they might also buy:



User-Product Matrix



Amazon Product Recommendation

• Amazon product recommendation method:

• Return the KNNs across columns.
– Find ‘j’ values minimizing ||xi – xj||.

– Products that were bought by similar users.

• But first divide each column by its norm, xi/||xi||.
– This is called normalization.

– Reflects whether product is bought by many people or few people.



Amazon Product Recommendation

• Consider this user-item matrix:

• Product 1 is most similar to Product 3 (bought by lots of people).

• Product 2 is most similar to Product 4 (also bought by John and Yoko).

• Product 3 is equally similar to Products 1, 5, and 6.

– Does not take into account that Product 1 is more popular than 5 and 6.



Amazon Product Recommendation

• Consider this user-item matrix (normalized):

• Product 1 is most similar to Product 3 (bought by lots of people).

• Product 2 is most similar to Product 4 (also bought by John and Yoko).

• Product 3 is most similar to Product 1.

– Normalization means it prefers the popular items.



Cost of Finding Nearest Neighbours

• With ‘n’ users and ‘d’ products, finding KNNs costs O(nd).

– Not feasible if ‘n’ and ‘d’ are in the millions.

• It’s faster if the user-product matrix is sparse: O(z) for z non-zeroes.

– But ‘z’ is still enormous in the Amazon example.



Closest-Point Problems

• We’ve seen a lot of “closest point” problems:

– K-nearest neighbours classification.

– K-means clustering.

– Density-based clustering.

– Hierarchical clustering.

– KNN-based outlier detection.

– Outlierness ratio.

– Amazon product recommendation.

• How can we possibly apply these to Amazon-sized datasets?



But first the easy case: “Memorize the Answers”

• Easy case: you have a limited number of possible test examples.

– E.g., you will always choose an existing product (not arbitrary features).

• In this case, just memorize the answers:

– For each test example, compute all KNNs and store pointers to answers.

– At test time, just return a set of pointers to the answers.

• The answers are called an inverted index, queries now cost O(k).

– Needs an extra O(nk) storage.



Grid-Based Pruning

• Assume we want to find objects within a distance of ‘ε’ of point xi.

Divide space 
into squares 
of length ε.

Hash examples based on 
squares:
Hash[“64,76”] = {x3,x70}
(Dict in Python/Julia)



Grid-Based Pruning

• Which squares do we need to check?

Points in same square can 
have distance less than ‘ε’.



Grid-Based Pruning

• Which squares do we need to check?

Points in adjacent 
squares can have 
distance less than 
distance ‘ε’.



Grid-Based Pruning

• Which squares do we need to check?

Points in non-adjacent
squares must have 
distance more than ‘ε’.



Grid-Based Pruning

• Assume we want to find objects within a distance of ‘ε’ of point xi.

Divide space 
into squares 
of length ε.

Only need to check 
points in same and 
adjacent squares.

Hash examples based on 
squares:
Hash[“64,76”] = {x3,x70}
(Dict in Python/Julia)



Grid-Based Pruning Discussion

• Similar ideas can be used for other “closest point” calculations.

– Can be used with any norm.

– If you want KNN, can use need grids of multiple sizes.

• But we have the “curse of dimensionality”:

– Number of adjacent regions increases exponentially:

• 2 with d=1, 8 with d=2, 26 with d=3, 80 with d=4, 252 with d=5, 3d-1 in d-dimension.



Grid-Based Pruning Discussion

• Better choices of regions:

– Quad-trees.

– Kd-trees.

– R-trees.

– Ball-trees.

• Works better than squares, but worst case is still exponential.

https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/R-tree
http://www.astroml.org/book_figures/chapter2/fig_balltree_example.html



Approximate Nearest Neighbours

• Approximate nearest neighbours:
– We allow errors in the nearest neighbour calculation to gain speed.

• A simple and very-fast approximate nearest neighbour method:
– Only check points within the same square.

– Works if neighbours are in the same square.

– But misses neighbours in adjacent squares.

• A simple trick to improve the approximation quality:
– Use more than one grid.

– So “close” points have more “chances” to be in the same square.



Approximate Nearest Neighbours



Approximate Nearest Neighbours

• Using multiple sets of regions improves accuracy.



Approximate Nearest Neighbours

• Using multiple sets of regions improves accuracy.



Locality-Sensitive Hashing

• Even with multiple regions, approximation can be poor for large ‘d’.

• Common Solution (locality-sensitive hashing):

– Replace features xi with lower-dimensional features zi.

• E.g., turns each a 1000000-dimensional xi into a 10-dimensional zi.

– Choose random zi to preserve high-dimensional distances (bonus slides).

– Find points hashed to the same square in lower-dimensional ‘zi’ space.

– Repeat with different random zi values to increase chances of success.



End of Part 2: Key Concepts

• We focused on 3 unsupervised learning tasks:
– Clustering.

• Partitioning (k-means) vs. density-based.
• “Flat” vs. hierarachial (agglomerative).
• Vector quantization.
• Label switching.

– Outlier Detection.
• Ambiguous objective.
• Common approaches (model-based, graphical, clustering, distance-based, supervised).

– Finding similar items.
• Amazon product recommendation.
• Region-based pruning for fast “closest point” calculations.

• If previous years we also covered “association rules”:
– http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L12.pdf

http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L12.pdf


Summary

• Distance-based outlier detection: 

– Based on measuring (relative) distance to neighbours.

• Supervised-learning for outlier detection:

– Can detect complex outliers given a training set.

• Amazon product recommendation: 

– Find similar items using nearest neighbour search.

• Fast nearest neighbour methods drastically reduce search time.

– Inverted indices, distance-based pruning.

• Next week: how do we do supervised learning with a continuous yi?



Locality-Sensitive Hashing

• How do we make distance-preserving low-dimensional features?

• Johnson-Lindenstrauss lemma (paraphrased):

– Define element ‘c’ of the k-dimensional ‘zi’ by:

– Where the scalars ‘wcj’ are samples from a standard normal distribution.

• We can collect them into a ‘k’ by ‘d’ matrix ‘W’, which is the same for all ‘i’.

– If the dimension ‘k’ of the ‘zi’ is large enough, then:

• Specifically, we’ll require k = Ω(log(d)).



Locality-Sensitive Hashing

• Locality-sensitive hashing:

1. Multiply X by a random Gaussian matrix ‘W’ to reduce dimensionality.

2. Hash dimension-reduced points into regions.

3. Test points in the same region as potential nearest neighbours.

• Now repeat with a different random matrix.

– To increase the chances that the closest points are hashed together.

• An accessible overview is here:

– http://www.slaney.org/malcolm/yahoo/Slaney2008-LSHTutorial.pdf

http://www.slaney.org/malcolm/yahoo/Slaney2008-LSHTutorial.pdf


Cosine Similarity vs. Normalized Nearest Neighbours

• The Amazon paper says they “maximize cosine similarity”.

• But this is equivalent to normalized nearest neighbours.

• Proof for k=1:



Outlierness (Symbol Definition)

• Let Nk(xi) be the k-nearest neighbours of xi.

• Let Dk(xi) be the average distance to k-nearest neighbours:

• Outlierness is ratio of Dk(xi) to average Dk(xj) for its neighbours ‘j’:

• If outlierness > 1, xi is further away from neighbours than expected.



Outlierness with Close Clusters

• If clusters are close, outlierness gives unintuitive results:

• In this example, ‘p’ has higher outlierness than ‘q’ and ‘r’:

– The green points are not part of the KNN list of ‘p’ for small ‘k’.

http://www.comp.nus.edu.sg/~atung/publication/pakdd06_outlier.pdf



Outlierness with Close Clusters

• ‘Influenced outlierness’ (INFLO) ratio:
– Include in denominator the ‘reverse’ k-nearest neighbours:

• Points that have ‘p’ in KNN list.

– Adds ‘s’ and ‘t’ from bigger cluster that includes ‘p’:

• But still has problems:
– Dealing with hierarchical clusters.
– Yields many false positives if you have “global” outliers.
– Goldstein and Uchida [2016] recommend just using KNN.

http://www.comp.nus.edu.sg/~atung/publication/pakdd06_outlier.pdf



Malware and Intrusion Detection Systems

• In antivirus software and software for network intrusion detection 
systems, another method of outlier detection is common:
– “Signature-based” methods: keep a list of byte sequences that are known to be 

malicious. Raise an alarm if you detect one.

– Typically looks for exact matches, so can be implemented very quickly.
• E.g., using data structures like “suffix trees”.

– Can’t detect new types of outliers, but if you are good at keeping your list of 
possible malicious sequences up to date then this is very effective.

– Here is an article discussing why ML is *not* common in these settings:
• http://www.icir.org/robin/papers/oakland10-ml.pdf
• But this is now changing and ML is starting to appear in anti-virus software.

http://www.icir.org/robin/papers/oakland10-ml.pdf


Shingling: Decomposing Objects into Pars

• We say that a program is a virus if it has a malicious byte sequence.
– We don’t try to compute similarity of the whole program.

• This idea of finding similar “parts” is used in various places.

• A key tool to be help us do this is “shingling”:
– Dividing an object into consecutive “parts”.

– For example, we previously saw “bag of words”.

• Given the shingles, we can search for similar parts rather than 
whole objects.



Shingling Applications

• For example, n-grams are one way to shingle text data.
– If we use tri-grams, the sentence “there are lots of applications of nearest 

neighbours” would have these shingles:
• {“there are lots”, “are lots of”, “lots of applications”, “of applications of”, “applications of 

nearest”, “of nearest neighbours”}.

– We can find similar items using similarity/distance between sets.
• For example, using the Jaccard similarity.

• Applications where finding similar shingles is useful:
– Detecting plagiarism (shared n-grams indicates copying).

– BLAST gene search tool (shingle parts of a biological sequence).

– Entity resolution (finding whether two citations refer to the same thing).

– Fingerprint recognition (shingles are “minutiae” in different image grid cells).



Shingling Practical Issues

• In practice, you can save memory by not storing the full shingles. 

• Instead, define a hash function mapping from shingles to bit-
vectors, and just store the bit-vectors.

• However, for some applications even storing the bit-vectors is too 
costly:
– This leads to randomized algorithms for computing Jaccard score between 

huge sets even if you don’t store all the shingles.

• Conceptually, it’s still useful to think of the “bag of shingles” matrix:
– Xij is ‘1’ if object ‘i’ has shingle ‘j’.



Minhash and Jaccard Similarity

• Let h(xi) be the smallest index ‘j’ where xij is non-zero (“minhash”).

• Consider a random permutation of the possible shingles ‘j’:
– In Julia: randperm(d).

– The value h(xi) will be different based on the permutation.

• Neat fact: 
– Probability that h(xi) = h(xj) is the Jaccard similarity between xi and xj.

• Proof idea:
– Probability that you stop with h(xi) = h(xj) is given by probability that xik=xjk=1 for 

a random ‘k’, divided by probability that at least one of xik=1 or xjk=1 is true for a  
random ‘k’.



Low-Memory Randomized Jaccard Approximation

• The “neat fact” lets us approximate Jaccard similarity without 
storing the shingles.

• First we generate a bunch of random permutations.

– In practice, use a random hash function to randomly map 1:d to 1:d.

• For each example, go through its shingles to compute h(xi) for each 
permutation.

– No need to store the shingles.

• Approximate Jaccard(xi,xj) as the fraction of permutations where 
h(xi)=h(xj).


