CPSC 340: Machine Learning and Data Mining

Finding Similar Items Fall 2017

Admin

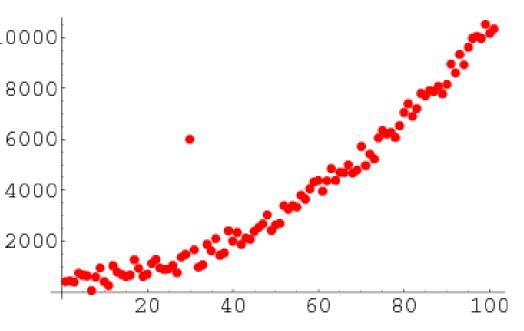
- Assignment 1 is due tonight.
 - 1 late day to hand in Monday, 2 late days for Wednesday.
- Assignment 2 will be up soon.
 - Start early.

- We'll start using gradients and linear algebra next week:
 - Many people get lost when we get to this material.
 - If you aren't comfortable with these, start reviewing/practicing!

Last Time: Outlier Detection

- We discussed outlier detection:
 - Identifying "unusually" different objects.
 - Hard to precisely define.

- We discussed 3 common approaches:
 - Fit a model, see if points fit the model.
 - Plot the data, and look for weird points.
 - Cluster the data, and see if points don't cluster.



Distance-Based Outlier Detection

- Most outlier detection approaches are based on distances.
- Can we skip model/plot/clustering and just measure distances?
 - How many points lie in a radius 'epsilon'?
 - What is distance to kth nearest neighbour?
- UBC connection (first paper on this topic):

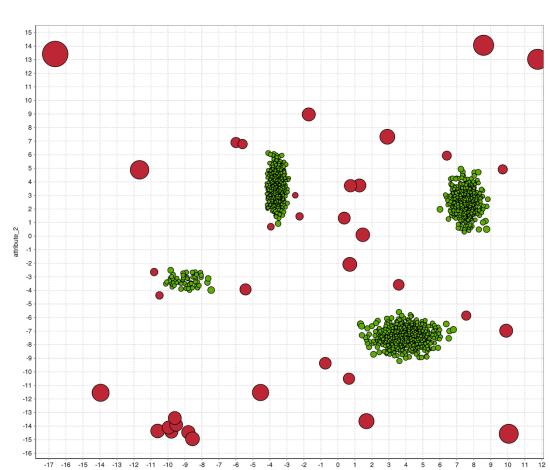
Algorithms for Mining Distance-Based Outliers in Large Datasets

Edwin M. Knorr and Raymond T. Ng Department of Computer Science University of British Columbia

Global Distance-Based Outlier Detection: KNN

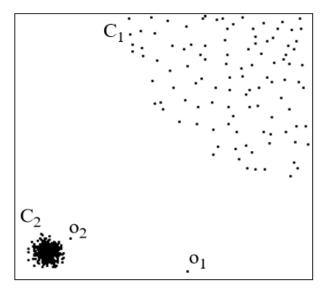
- KNN outlier detection:
 - For each point, compute the average distance to its KNN.
 - Sort the set of 'n' average distances.
 - Choose the biggest values as outliers.
 - Filter out points that are far from their KNNs.
- Goldstein and Uchida [2016]:
 - Compared 19 methods on 10 datasets.
 - KNN best for finding "global" outliers.
 - "Local" outliers best found with local distance-based methods...

ttp://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0152173



Local Distance-Based Outlier Detection

• As with density-based clustering, problem with differing densities:



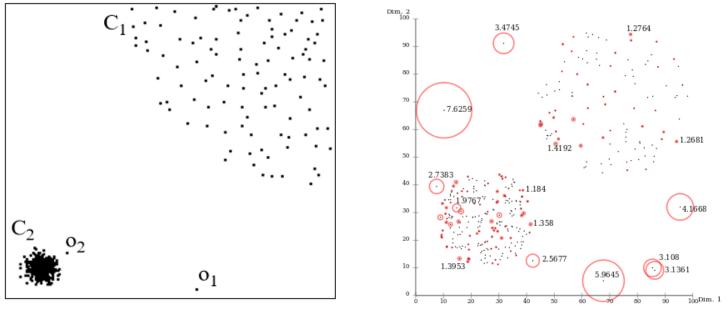
- Outlier o₂ has similar density as elements of cluster C₁.
- Basic idea behind local distance-based methods:
 - Outlier o_2 is "relatively" far compared to its neighbours.

Local Distance-Based Outlier Detection

• "Outlierness" ratio of example 'i':

average distance of 'i' to its KNNs average distance of neighbours of 'i' to their KNNs

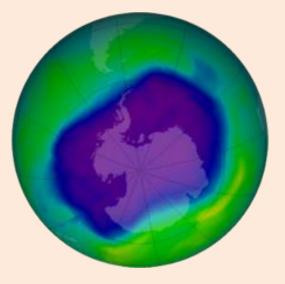
• If outlierness > 1, x_i is further away from neighbours than expected.



http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf https://en.wikipedia.org/wiki/Local_outlier_factor

Problem with Unsupervised Outlier Detection

• Why wasn't the hole in the ozone layer discovered for 9 years?



- Can be hard to decide when to report an outler:
 - If you report too many non-outliers, users will turn you off.
 - Most antivirus programs do not use ML methods (see <u>"base-rate fallacy"</u>)

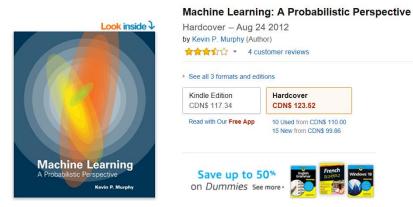
Supervised Outlier Detection

- Final approach to outlier detection is to use supervised learning:
 - $y_i = 1$ if x_i is an outlier.
 - y_i = 0 if x_i is a regular point.
- We can use our methods for supervised learning:
 - We can find very complicated outlier patterns.
 - Classic credit card fraud detection methods used decision trees.
- But it needs supervision:
 - We need to know what outliers look like.
 - We may not detect new "types" of outliers.

(pause)

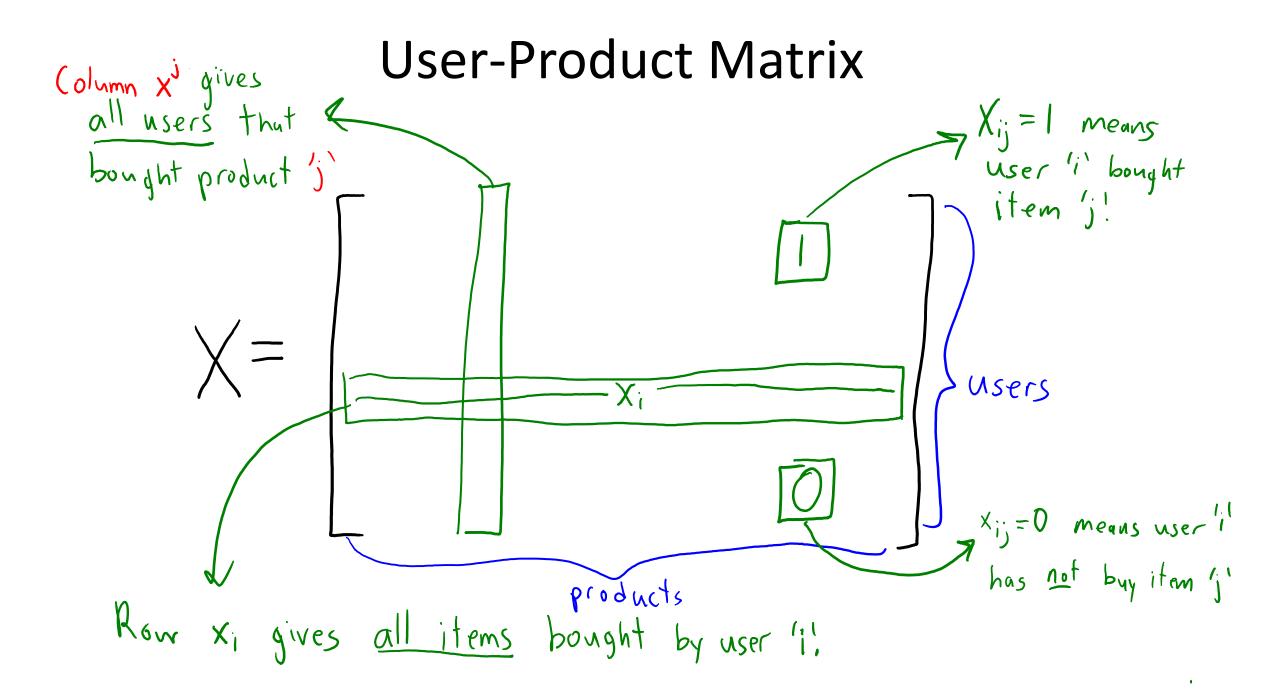
Motivation: Product Recommendation

• A customer comes to your website looking to buy at item:



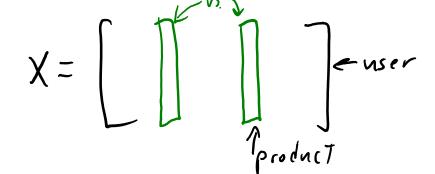
• You want to find similar items that they might also buy:

Page 1 of 20



Amazon Product Recommendation

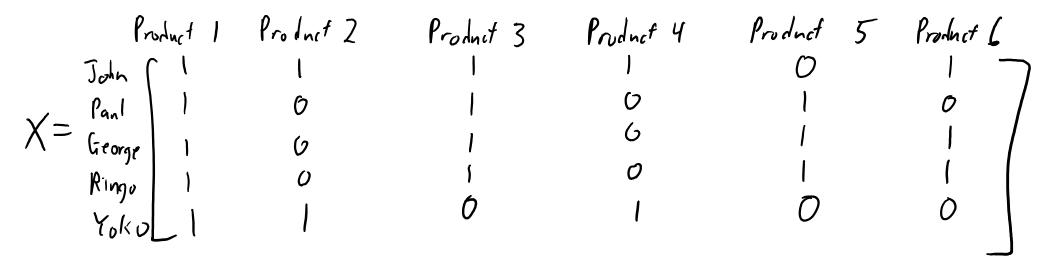
• Amazon product recommendation method:



- Return the KNNs across columns.
 - Find 'j' values minimizing $||x^i x^j||$.
 - Products that were bought by similar users.
- But first divide each column by its norm, xⁱ/||xⁱ||.
 - This is called normalization.
 - Reflects whether product is bought by many people or few people.

Amazon Product Recommendation

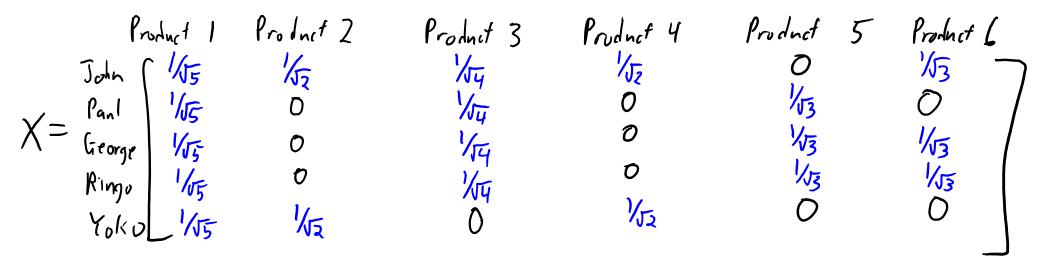
• Consider this user-item matrix:



- Product 1 is most similar to Product 3 (bought by lots of people).
- Product 2 is most similar to Product 4 (also bought by John and Yoko).
- Product 3 is equally similar to Products 1, 5, and 6.
 - Does not take into account that Product 1 is more popular than 5 and 6.

Amazon Product Recommendation

• Consider this user-item matrix (normalized):



- Product 1 is most similar to Product 3 (bought by lots of people).
- Product 2 is most similar to Product 4 (also bought by John and Yoko).
- Product 3 is most similar to Product 1.
 - Normalization means it prefers the popular items.

Cost of Finding Nearest Neighbours

- With 'n' users and 'd' products, finding KNNs costs O(nd).
 Not feasible if 'n' and 'd' are in the millions.
- It's faster if the user-product matrix is sparse: O(z) for z non-zeroes.
 But 'z' is still enormous in the Amazon example.

Closest-Point Problems

- We've seen a lot of "closest point" problems:
 - K-nearest neighbours classification.
 - K-means clustering.
 - Density-based clustering.
 - Hierarchical clustering.
 - KNN-based outlier detection.
 - Outlierness ratio.
 - Amazon product recommendation.

• How can we possibly apply these to Amazon-sized datasets?

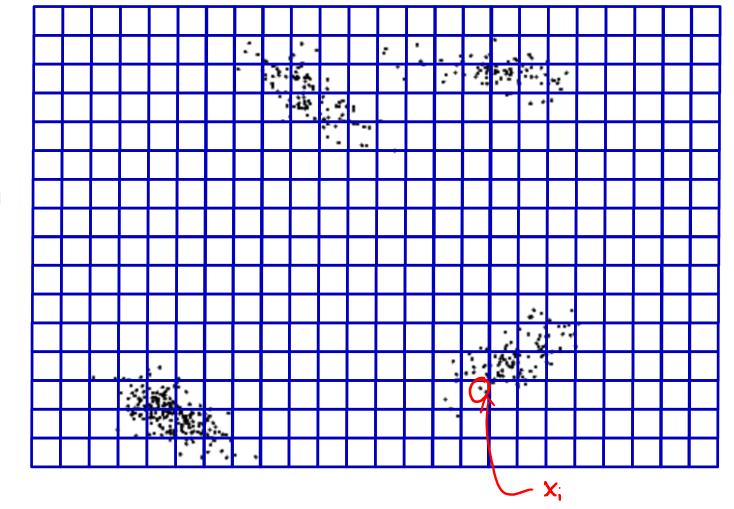
But first the easy case: "Memorize the Answers"

- Easy case: you have a limited number of possible test examples.
 - E.g., you will always choose an existing product (not arbitrary features).
- In this case, just memorize the answers:
 - For each test example, compute all KNNs and store pointers to answers.
 - At test time, just return a set of pointers to the answers.
- The answers are called an inverted index, queries now cost O(k).
 - Needs an extra O(nk) storage.

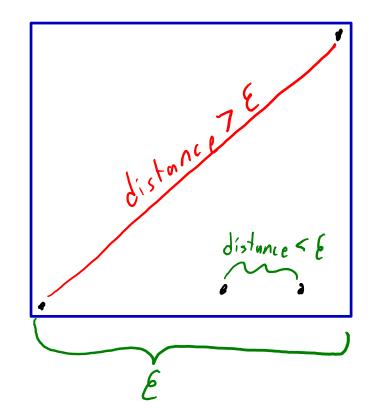
• Assume we want to find objects within a distance of ' ϵ ' of point x_i .

Divide space into squares of length ε.

```
Hash examples based on
squares:
Hash["64,76"] = \{x_3, x_{70}\}
(Dict in Python/Julia)
```



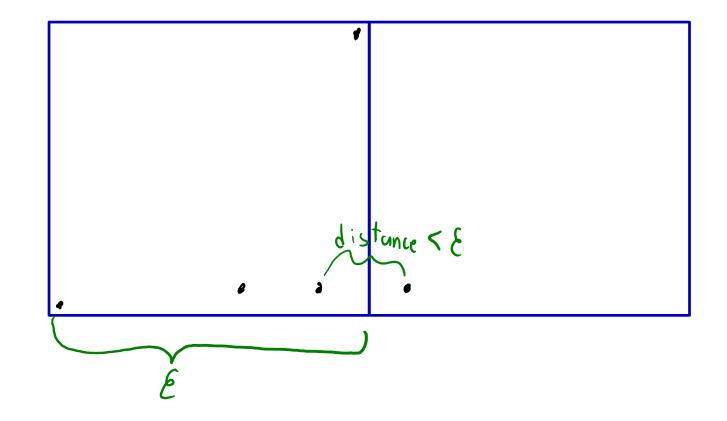
• Which squares do we need to check?



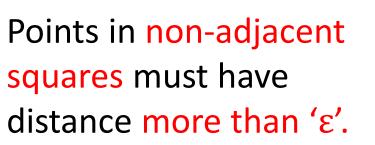
Points in same square can have distance less than ' ϵ '.

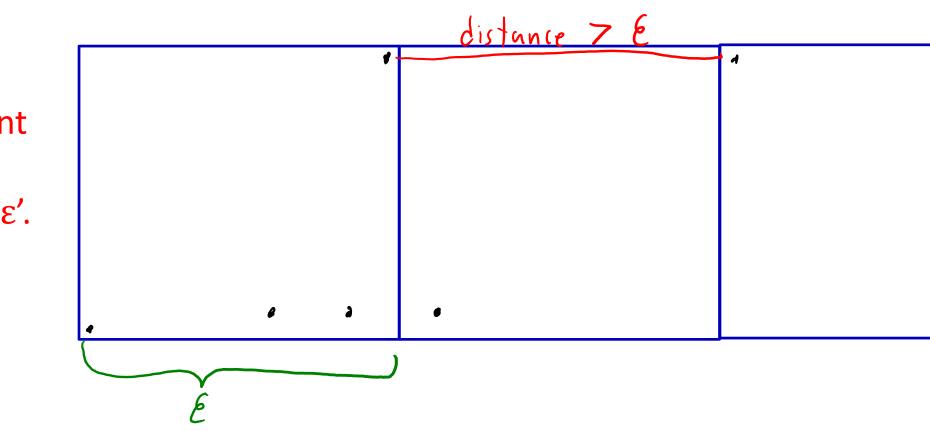
• Which squares do we need to check?

Points in adjacent squares can have distance less than distance 'ε'.



• Which squares do we need to check?



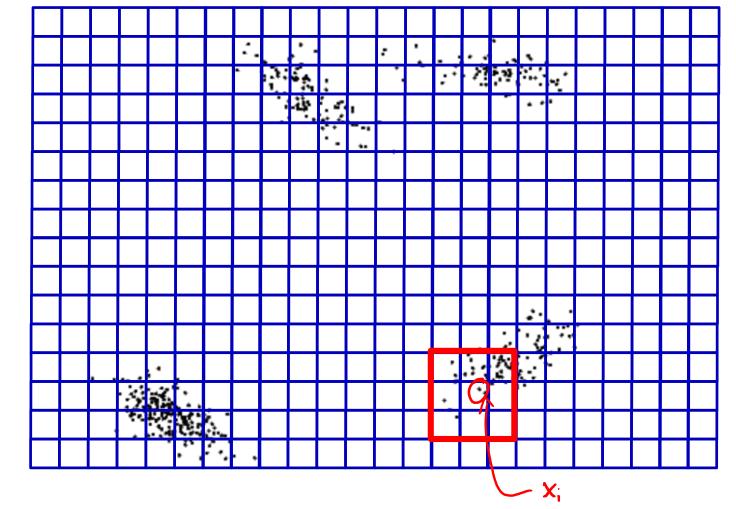


• Assume we want to find objects within a distance of ' ϵ ' of point x_i .

Divide space into squares of length ε.

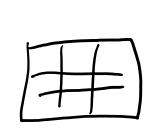
Hash examples based on squares: Hash["64,76"] = $\{x_3, x_{70}\}$ (Dict in Python/Julia)

Only need to check points in same and adjacent squares.



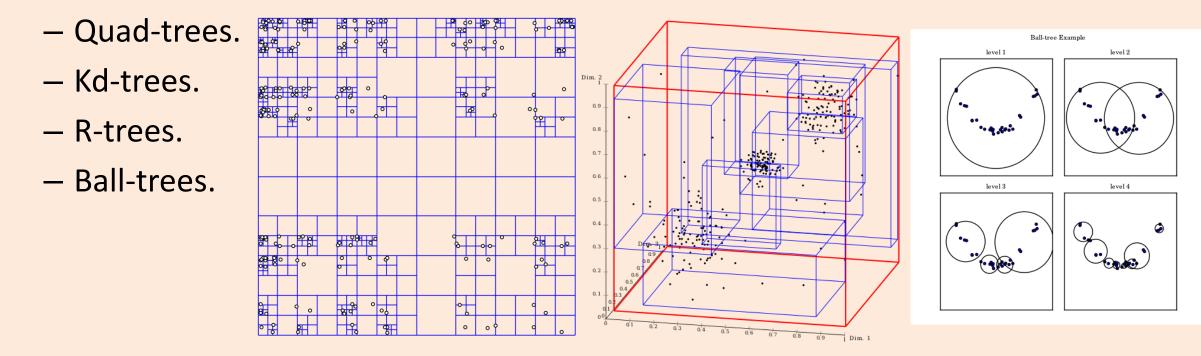
Grid-Based Pruning Discussion

- Similar ideas can be used for other "closest point" calculations.
 - Can be used with any norm.
 - If you want KNN, can use need grids of multiple sizes.
- But we have the "curse of dimensionality":
 - Number of adjacent regions increases exponentially:
 - 2 with d=1, 8 with d=2, 26 with d=3, 80 with d=4, 252 with d=5, 3^d-1 in d-dimension.



Grid-Based Pruning Discussion

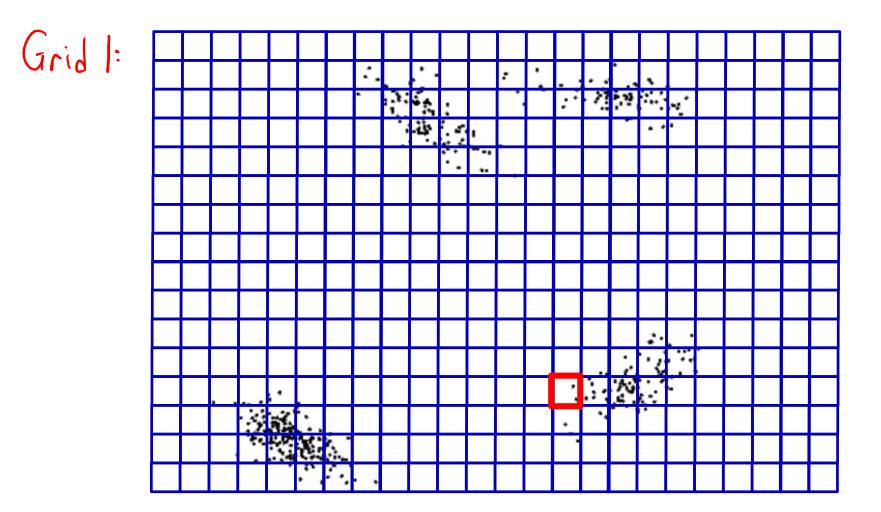
• Better choices of regions:



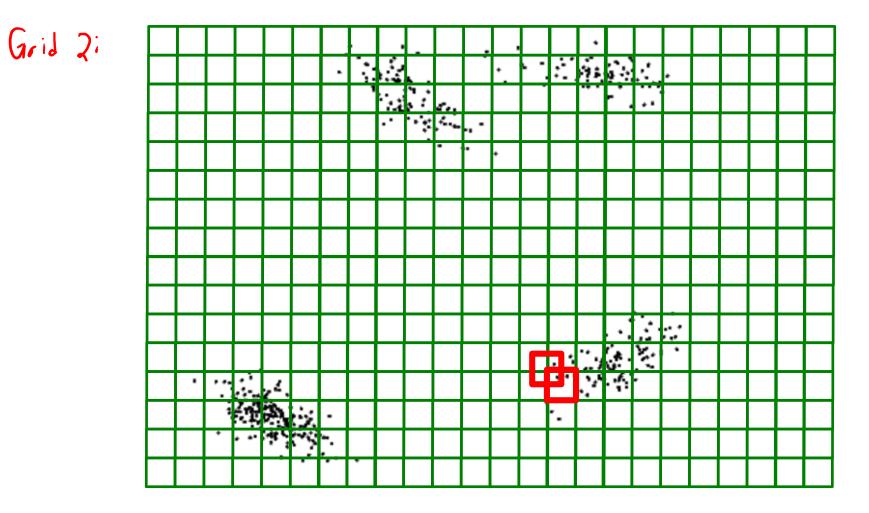
• Works better than squares, but worst case is still exponential.

https://en.wikipedia.org/wiki/Quadtree https://en.wikipedia.org/wiki/R-tree http://www.astroml.org/book_figures/chapter2/fig_balltree_example.html

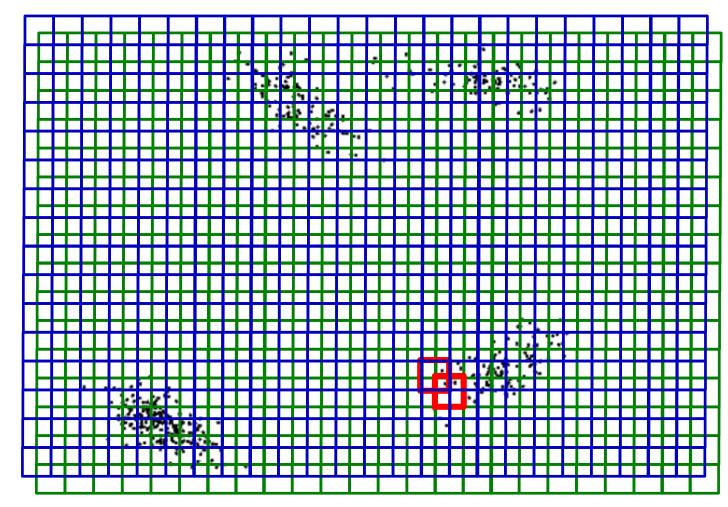
- *Approximate* nearest neighbours:
 - We allow errors in the nearest neighbour calculation to gain speed.
- A simple and very-fast approximate nearest neighbour method:
 - Only check points within the same square.
 - Works if neighbours are in the same square.
 - But misses neighbours in adjacent squares.
- A simple trick to improve the approximation quality:
 - Use more than one grid.
 - So "close" points have more "chances" to be in the same square.



• Using multiple sets of regions improves accuracy.



• Using multiple sets of regions improves accuracy.



Locality-Sensitive Hashing

• Even with multiple regions, approximation can be poor for large 'd'.

- Common Solution (locality-sensitive hashing):
 - Replace features x_i with lower-dimensional features z_i .
 - E.g., turns each a 1000000-dimensional x_i into a 10-dimensional z_i.
 - Choose random z_i to preserve high-dimensional distances (bonus slides).

$$\|z_i - z_j\| \approx \|x_i - x_j\|$$

- Find points hashed to the same square in lower-dimensional ' z_i ' space.
- Repeat with different random z_i values to increase chances of success.

End of Part 2: Key Concepts

- We focused on 3 unsupervised learning tasks:
 - Clustering.
 - Partitioning (k-means) vs. density-based.
 - "Flat" vs. hierarachial (agglomerative).
 - Vector quantization.
 - Label switching.
 - Outlier Detection.
 - Ambiguous objective.
 - Common approaches (model-based, graphical, clustering, distance-based, supervised).
 - Finding similar items.
 - Amazon product recommendation.
 - Region-based pruning for fast "closest point" calculations.
- If previous years we also covered "association rules":
 - <u>http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L12.pdf</u>

Summary

- Distance-based outlier detection:
 - Based on measuring (relative) distance to neighbours.
- Supervised-learning for outlier detection:
 - Can detect complex outliers given a training set.
- Amazon product recommendation:
 - Find similar items using nearest neighbour search.
- Fast nearest neighbour methods drastically reduce search time.
 - Inverted indices, distance-based pruning.

• Next week: how do we do supervised learning with a *continuous* y_i?

Locality-Sensitive Hashing

• How do we make distance-preserving low-dimensional features?

- Johnson-Lindenstrauss lemma (paraphrased):
 - Define element 'c' of the k-dimensional ' z_i ' by:

$$Z_{ic} = W_{c1} X_{i1} + W_{c2} X_{i2} + \dots + W_{cd} X_{id}$$

- Where the scalars ' w_{ci} ' are samples from a standard normal distribution.
 - We can collect them into a 'k' by 'd' matrix 'W', which is the same for all 'i'.
- If the dimension 'k' of the 'z' is large enough, then: $||_{z_i} z_j| \approx ||x_i x_j||$
 - Specifically, we'll require k = Ω(log(d)).

Locality-Sensitive Hashing

- Locality-sensitive hashing:
 - 1. Multiply X by a random Gaussian matrix 'W' to reduce dimensionality.
 - 2. Hash dimension-reduced points into regions.
 - 3. Test points in the same region as potential nearest neighbours.
- Now repeat with a different random matrix.
 - To increase the chances that the closest points are hashed together.
- An accessible overview is here:
 - <u>http://www.slaney.org/malcolm/yahoo/Slaney2008-LSHTutorial.pdf</u>

Cosine Similarity vs. Normalized Nearest Neighbours

- The Amazon paper says they "maximize cosine similarity".
- But this is equivalent to normalized nearest neighbours.
- Proof for k=1:

$$\begin{array}{l} \arg\min\left\|\left\|\frac{x_{i}}{\|x_{i}\|}-\frac{x_{j}}{\|x_{j}\|}\right\| &\equiv \arg\min\left[\frac{1}{2}\right]\left\|\frac{y_{i}}{\|x_{i}\|}-\frac{x_{j}}{\|x_{j}\|}\right\|^{2} \\ &\equiv \arg\min\left[\frac{1}{2}\right]\left|\frac{x_{i}^{T}x_{i}}{|x_{i}\|^{2}}-\frac{2x_{i}^{T}x_{j}}{|x_{j}\|}+\frac{1}{2}\frac{x_{j}^{T}x_{j}}{|x_{j}\|^{2}} \\ &\equiv \arg\min\left[-\frac{x_{i}^{T}x_{j}}{|x_{i}\|\cdot|x_{j}\|}\right] \\ &\equiv \arg\max\left[\frac{x_{i}^{T}x_{j}}{|x_{i}\|\cdot|x_{j}\|}\right] \\ &\equiv \arg\max\left[\frac{x_{i}^{T}x_{j}}{|x_{i}\|\cdot|x_{j}\|}\right] \end{array}$$

Outlierness (Symbol Definition)

- Let N_k(x_i) be the k-nearest neighbours of x_i.
- Let D_k(x_i) be the average distance to k-nearest neighbours:

$$\int_{k} (\mathbf{x}_{i}) = \frac{1}{k} \sum_{j \in N_{k}(\mathbf{x}_{i})} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

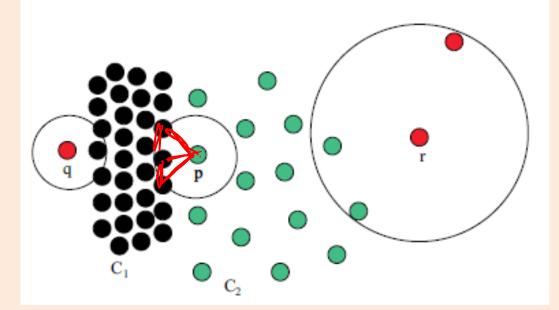
• Outlierness is ratio of $D_k(x_i)$ to average $D_k(x_i)$ for its neighbours 'j':

$$O_{k}(x_{i}) = \frac{D_{k}(x_{i})}{\frac{1}{k} \sum_{j \in \mathcal{N}_{k}(x_{i})} D_{k}(x_{j})}$$

• If outlierness > 1, x_i is further away from neighbours than expected.

Outlierness with Close Clusters

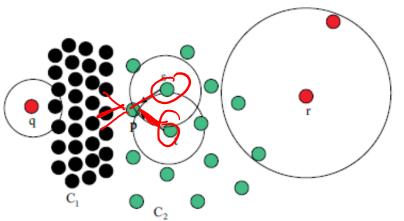
• If clusters are close, outlierness gives unintuitive results:



In this example, 'p' has higher outlierness than 'q' and 'r':
 The green points are not part of the KNN list of 'p' for small 'k'.

Outlierness with Close Clusters

- 'Influenced outlierness' (INFLO) ratio:
 - Include in denominator the 'reverse' k-nearest neighbours:
 - Points that have 'p' in KNN list.
 - Adds 's' and 't' from bigger cluster that includes 'p':



- But still has problems:
 - Dealing with hierarchical clusters.
 - Yields many false positives if you have "global" outliers.
 - Goldstein and Uchida [2016] recommend just using KNN.

Malware and Intrusion Detection Systems

- In antivirus software and software for network intrusion detection systems, another method of outlier detection is common:
 - "Signature-based" methods: keep a list of byte sequences that are known to be malicious. Raise an alarm if you detect one.
 - Typically looks for **exact** matches, so can be implemented very quickly.
 - E.g., using data structures like "suffix trees".
 - Can't detect new types of outliers, but if you are good at keeping your list of possible malicious sequences up to date then this is very effective.
 - Here is an article discussing why ML is *not* common in these settings:
 - <u>http://www.icir.org/robin/papers/oakland10-ml.pdf</u>
 - But this is now changing and ML is starting to appear in anti-virus software.

Shingling: Decomposing Objects into Pars

- We say that a program is a virus if it has a malicious byte sequence.
 We don't try to compute similarity of the whole program.
- This idea of finding similar "parts" is used in various places.
- A key tool to be help us do this is "shingling":
 - Dividing an object into consecutive "parts".
 - For example, we previously saw "bag of words".
- Given the shingles, we can search for similar parts rather than whole objects.

Shingling Applications

- For example, n-grams are one way to shingle text data.
 - If we use tri-grams, the sentence "there are lots of applications of nearest neighbours" would have these shingles:
 - {"there are lots", "are lots of", "lots of applications", "of applications of", "applications of nearest", "of nearest neighbours"}.
 - We can find similar items using similarity/distance between sets.
 - For example, using the Jaccard similarity.
- Applications where finding similar shingles is useful:
 - Detecting plagiarism (shared n-grams indicates copying).
 - BLAST gene search tool (shingle parts of a biological sequence).
 - Entity resolution (finding whether two citations refer to the same thing).
 - Fingerprint recognition (shingles are "minutiae" in different image grid cells).

Shingling Practical Issues

- In practice, you can save memory by not storing the full shingles.
- Instead, define a hash function mapping from shingles to bit-vectors, and just store the bit-vectors.
- However, for some applications even storing the bit-vectors is too costly:
 - This leads to randomized algorithms for computing Jaccard score between huge sets even if you don't store all the shingles.
- Conceptually, it's still useful to think of the "bag of shingles" matrix:
 X_{ii} is '1' if object 'i' has shingle 'j'.

Minhash and Jaccard Similarity

- Let h(x_i) be the smallest index 'j' where x_{ii} is non-zero ("minhash").
- Consider a random permutation of the possible shingles 'j':
 - In Julia: randperm(d).
 - The value $h(x_i)$ will be different based on the permutation.
- Neat fact:
 - Probability that $h(x_i) = h(x_i)$ is the Jaccard similarity between x_i and x_i .
- Proof idea:
 - Probability that you stop with $h(x_i) = h(x_j)$ is given by probability that $x_{ik}=x_{jk}=1$ for a random 'k', divided by probability that at least one of $x_{ik}=1$ or $x_{jk}=1$ is true for a random 'k'.

Low-Memory Randomized Jaccard Approximation

- The "neat fact" lets us approximate Jaccard similarity without storing the shingles.
- First we generate a bunch of random permutations.
 In practice, use a random hash function to randomly map 1:d to 1:d.
- For each example, go through its shingles to compute h(x_i) for each permutation.
 - No need to store the shingles.
- Approximate Jaccard(x_i,x_j) as the fraction of permutations where h(x_i)=h(x_j).