CPSC 340:
Machine Learning and Data Mining

Finding Similar Items
Fall 2017

Admin

* Assignment 1 is due tonight.
— 1 late day to hand in Monday, 2 late days for Wednesday.

* Assignment 2 will be up soon.
— Start early.

 We’'ll start using gradients and linear algebra next week:
— Many people get lost when we get to this material.
— If you aren’t comfortable with these, start reviewing/practicing!

Last Time: Outlier Detection

e We discussed outlier detection:

— ldentifying “unusually” different obJects.mDm ‘..%
— Hard to precisely define. %°
8000 o
>
OO0 . -‘ﬂ
4000 “‘J':"*'
* We discussed 3 common approaches: #‘Lﬂr'r
— Fit a model, see if points fit the model. A i
20 40 60 a0 100

— Plot the data, and look for weird points.
— Cluster the data, and see if points don’t cluster.

Distance-Based Outlier Detection

 Most outlier detection approaches are based on distances.
* Can we skip model/plot/clustering and just measure distances?

— How many points lie in a radius ‘epsilon’?
— What is distance to kth nearest neighbour?

* UBC connection (first paper on this topic):

Algorithms for Mining Distance-Based Outliers in Large
Datasets

Edwin M. Knorr and Raymond T. Ng
Department of Computer Science
University of British Columbia

Global Distance-Based Outlier Detection: KNN

 KNN outlier detection:
— For each point, compute the average distance to its KNN.

— Sort the set of ‘n” average distances.

15
" .
| @

12

1

— Choose the biggest values as outliers.

 Filter out points that are far from their KNNs.

o
e Goldstein and Uchida [2016]: ® o
— Compared 19 methods on 10 datasets. ° s
— KNN best for finding “global” outliers. o
— “Local” outliers best found with local 1 e - |
distance-based methods... ; e, o s

Local Distance-Based Outlier Detection

* As with density-based clustering, problem with differing densities:

Cpov - -

* 01

* Outlier o, has similar density as elements of cluster C,.

 Basic idea behind local distance-based methods:

— Outlier o, is “relatively” far compared to its neighbours.

Local Distance-Based Outlier Detection

* “Outlierness” ratio of example i’:
G\Vcraae J/'\S‘fcmce of ' to ifs /(/V/V;

avecaqe distance of ngighbous of ' 4o Ther kI

* |f outlierness > 1, x; is further away from neighbours than expected.
Cl .' .‘ " ; ”:‘ ' ': o i e 1:.2754

Liloz ®

3108
) A

Problem with Unsupervised Outlier Detection

* Why wasn’t the hole in the ozone layer discovered for 9 years?

* Can be hard to decide when to report an outler:
— |f you report too many non-outliers, users will turn you off.
— Most antivirus programs do not use ML methods (see "base-rate fallacy”)

http://www.raid-symposium.org/raid99/PAPERS/Axelsson.pdf

Supervised Outlier Detection

* Final approach to outlier detection is to use supervised learning:
* y.=1if x. is an outlier.
* y,=0if x, is a regular point.

* We can use our methods for supervised learning:
— We can find very complicated outlier patterns.
— Classic credit card fraud detection methods used decision trees.

* But it needs supervision:
— We need to know what outliers look like.
— We may not detect new “types” of outliers.

(pause)

Motivation: Product Recommendation

* A customer comes to your website looking to buy at item:

Machine Learning: A Probabilistic Perspective

Hardcover — Aug 24 2012
by Kevin P. Murphy (Author)

WYy v 4 customer reviews

Look inside ¥

See all 3 formats and editions

Kindle Edition Hardcover
CDN$ 117.34 CDNS$ 123.52
Read with Our Free App 10 Used from CDN$ 110.00
15 New from CDN$ 99.86
Machine Learning
A Probabilistic Perspective Save up to 50%
Kovin P. Murphy on Dummies See more+

* You want to find similar items that they might also buy:

Customers Who Bought This Item Also Bought Page 1 of 20

Foundations of
Machine Learning

Dt Mo, v aod vt

< >
Pattern Recognition and Learning From Data The Elements of Statistical ~ Probabilistic Graphical Foundations of Machine
Machine Learning Yaser S. Abu-Mostafa Learning: Data Mining, Models: Principles and Learning (Adaptive
(Information Science and.. & fryiryr 88 Inference, and Prediction, Techniques (Adaptive.. Computation and..
Christopher Bishop Hardcover Trevor Hastie » Daphne Koller > Mehryar Mohri
Yo dkr i e v'e 115 fr i e e sy 50 okl i v 28 Wir sy 8

Hardcover Hardcover Hardcover Hardcover
$60.76 ~Prime $62.82 ~Prime $91.66 ~Prime $65.68 ~Prime

Coluge X1 gives User-Product Matrix
0\\\ WsersS '\'\r\d')(‘:, Means

\ J R
gt product Y _ ser

><‘— ,E: X — - / Users
_O I\

N | | K570 means wser

1'105 Qif ‘9\4\/ 'lltfw' /j‘

R products
6wy)(~, S\\/eﬁ @_U_M \’)O\Ag‘/\'\ \9\/ wnser I'I‘,

Amazon Product Recommendation

* Amazon product recommendation method:

/VS_ },
n -

)(- & wuser

- N
4}(0Jw(7
* Return the KNNs across columns.

— Find ‘j’ values minimizing | |x' — x| |.

— Products that were bought by similar users.

* But first divide each column by its norm, x'/| | x'| | .
— This is called normalization.
— Reflects whether product is bought by many people or few people.

Amazon Product Recommendation

e Consider this user-item matrix:
Padect | Product 2 Prodt 3 Prdut 4 Prded 5 Podeet [

John Y ‘ l | | O |

_ Panl ’] , o ' O
X_’ (ZfOYc)(] (7 ’ C) I ’
R"V\?o) 0 , 0 | |
\fo’\’()_, \ , 0 ! 0 O

* Product 1 is most similar to Product 3 (bought by lots of people).
* Product 2 is most similar to Product 4 (also bought by John and Yoko).

* Product 3 is equally similar to Products 1, 5, and 6.
— Does not take into account that Product 1 is more popular than 5 and 6.

Amazon Product Recommendation

Consider this user-item matrix (normalized):

FmAu(f | Pf‘o In(f 2 Pfazlmf 3 Ffvulhcf 4 p’” ‘/"“/ S/ PW'L# [
John ‘\ //d’ l/)'z‘ l/sfq ’/(E ’O ’/Ji
Lol ,/(IE' O \/JU 0 /"3 O 7
X= George | iz 0 Vi 0 \'/‘]3 Y5
R'V\?o ’/(Ig’ 0 y\lﬂ ? A3 ,/E
oY s 0 e © 0

Product 1 is most simi
Product 2 is most simi
Product 3 is most simi

ar to Product 3 (bought by lots of people).
ar to Product 4 (also bought by John and Yoko).
ar to Product 1.

— Normalization means it prefers the popular items.

Cost of Finding Nearest Neighbours

* With ‘n” users and ‘d’ products, finding KNNs costs O(nd).
— Not feasible if ‘n” and ‘d” are in the millions.

e |t’s faster if the user-product matrix is sparse: O(z) for z non-zeroes.

— But ‘7" is still enormous in the Amazon example.

Closest-Point Problems

 We’'ve seen a lot of “closest point” problems:
— K-nearest neighbours classification.
— K-means clustering.
— Density-based clustering.
— Hierarchical clustering.
— KNN-based outlier detection.
— Outlierness ratio.
— Amazon product recommendation.

* How can we possibly apply these to Amazon-sized datasets?

But first the easy case: “Memorize the Answers”

* Easy case: you have a limited number of possible test examples.
— E.g., you will always choose an existing product (not arbitrary features).

* |n this case, just memorize the answers:
— For each test example, compute all KNNs and store pointers to answers.
— At test time, just return a set of pointers to the answers.

 The answers are called an inverted index, queries now cost O(k).
— Needs an extra O(nk) storage.

Grid-Based Pruning

* Assume we want to find objects within a distance of ‘€” of point x..

Divide space = I
Into squares sl T T R

e 5
of length €. e

Hash examples based on
squares:

Hash[“64,76"] = {X5,X;}
(Dict in Python/Julia)

Grid-Based Pruning

* Which squares do we need to check?

Points in same square can
have distance less than ‘€.

Grid-Based Pruning

* Which squares do we need to check?

Points in adjacent
squares can have
distance less than
distance ‘¢’ didftunce < §

Grid-Based Pruning

* Which squares do we need to check?

A'|S+O\V\(f V4 é

' e —

Points in non-adjacent
squares must have
distance more than ‘€’

Grid-Based Pruning

* Assume we want to find objects within a distance of ‘€” of point x..
I

- L L
)
Ll
i'l?.‘.‘;"-ui »
Ly e L -

Divide space -
into squares I 5% ' :
of length €. L‘*

fe‘ :.p:-"l '_ *

Hash examples based on
squares:

Hash[“64,76"] = {X5,X;}
(Dict in Python/Julia)

Only need to check A
points in same and T
adjacent squares.

Grid-Based Pruning Discussion

* Similar ideas can be used for other “closest point” calculations.
— Can be used with any norm.
— |f you want KNN, can use need grids of multiple sizes.

* But we have the “curse of dimensionality”:

— Number of adjacent regions increases exponentially:
e 2 with d=1, 8 with d=2, 26 with d=3, 80 with d=4, 252 with d=5, 39-1 in d-dimension.

J]—t+—+—/)’)

I

Grid-Based Pruning Discussion

e Better choices of regions:

— Quad-trees. [P PR [FREF HF
— Kd-trees. PEENREpEeNp maEy |
T Pl LT -
— R-trees. umMl
— Ball-trees.)
LT i—ajﬂ;? AN g E
S L
a H ek N)

e el o | of
* Works better than squares, but worst case is still exponential.

Approximate Nearest Neighbours

* Approximate nearest neighbours:
— We allow errors in the nearest neighbour calculation to gain speed.

* Asimple and very-fast approximate nearest neighbour method:
— Only check points within the same square.
— Works if neighbours are in the same square.
— But misses neighbours in adjacent squares.

* Asimple trick to improve the approximation quality:
— Use more than one grid.
— So “close” points have more “chances” to be in the same square.

Approximate Nearest Neighbours

Gr'\J ,’ —1— —~ |
I R 3, = o

Approximate Nearest Neighbours

* Using multiple sets of regions improves accuracy.

G’]J 2; _1.|] I A TS I
o B R | Pl 5 Y (R IO
i -".r--
. 'n':;.é.
~1E
. =t

Approximate Nearest Neighbours

e Using multiple sets of regions improves accuracy.

1T

Locality-Sensitive Hashing

* Even with multiple regions, approximation can be poor for large ‘d".

 Common Solution (locality-sensitive hashing):

— Replace features x; with lower-dimensional features z..

* E.g., turns each a 1000000-dimensional x; into a 10-dimensional z..

— Choose random z, to preserve high-dimensional distances (bonus slides).
|2, = Z\‘)H 2 lx; - X, I

— Find points hashed to the same square in lower-dimensional ‘z” space.
— Repeat with different random z, values to increase chances of success.

End of Part 2: Key Concepts

 We focused on 3 unsupervised learning tasks:

— Clustering.

* Partitioning (k-means) vs. density-based.

* “Flat” vs. hierarachial (agglomerative).

* Vector quantization.

* Label switching.
— Outlier Detection.

* Ambiguous objective.

« Common approaches (model-based, graphical, clustering, distance-based, supervised).
— Finding similar items.

* Amazon product recommendation.

* Region-based pruning for fast “closest point” calculations.

* If previous years we also covered “association rules”:
— http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L12.pdf

http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L12.pdf

Summary

Distance-based outlier detection:
— Based on measuring (relative) distance to neighbours.

Supervised-learning for outlier detection:
— Can detect complex outliers given a training set.

Amazon product recommendation:

— Find similar items using nearest neighbour search.

Fast nearest neighbour methods drastically reduce search time.
— Inverted indices, distance-based pruning.

Next week: how do we do supervised learning with a continuous y,?

Locality-Sensitive Hashing

* How do we make distance-preserving low-dimensional features?

e Johnson-Lindenstrauss lemma (paraphrased):
— Define element c’ of the k-dimensional ‘z” by:
Zie T We X T WXt T Xy
— Where the scalars ‘w,’ are samples from a standard normal distribution.

* We can collect them into a ‘k” by ‘d” matrix ‘W’, which is the same for all ‘V’.

n
~

— If the dimension ‘k’ of the ‘z is large enough, then: “2{'23 I /(x, S I
» Specifically, we’ll require k = Q(log(d)).

Locality-Sensitive Hashing

* Locality-sensitive hashing:
1. Multiply X by a random Gaussian matrix ‘W’ to reduce dimensionality.
2. Hash dimension-reduced points into regions.
3. Test points in the same region as potential nearest neighbours.

* Now repeat with a different random matrix.
— To increase the chances that the closest points are hashed together.

e An accessible overview is here:
— http://www.slaney.org/malcolm/yahoo/Slaney2008-LSHTutorial.pdf

http://www.slaney.org/malcolm/yahoo/Slaney2008-LSHTutorial.pdf

Cosine Similarity vs. Normalized Nearest Neighbours

* The Amazon paper says they “maximize cosine similarity”.
e But this is equivalent to normalized nearest neighbours.

 Proof for k=1:

AR / | — arm ._l. i —ﬁ 2
| — -
\/\/"’_J = O) _l Xj ¥ . ’)/‘[V-
et R~ A L
Y\e\s\n\oo\,\(i ”X’“”x)“ “Jj“
= O\rgmin_ X, X
(T

- T i ' ' ' v.+
— QN6 Q\)M‘,\Y X.\‘X) §/7 Maximum - (osine Similant Ty
Hx'.‘\'\\)(s\\

Outlierness (Symbol Definition)

Let N, (x;) be the k-nearest neighbours of x..
Let D,(x;) be the average distance to k-nearest neighbours:
—
Dk(xi>’—’; Z “)(i_XJ’J/
M)

Outlierness is ratio of D,(x;) to average D,(x;) for its neighbours ‘j':

Ok(xi>: Ok()(i) B

JMM)
If outlierness > 1, x; is further away from neighbours than expected.

Outlierness with Close Clusters

 |f clusters are close, outlierness gives unintuitive results:

K 3 S AN

* In this example, ‘p’ has higher outlierness than ‘g’ and ‘r’:
— The green points are not part of the KNN list of ‘p’ for small k.

Outlierness with Close Clusters

* ‘Influenced outlierness’ (INFLO) ratio:

— Include in denominator the ‘reverse’ k-nearest neighbours:
* Points that have ‘p’ in KNN list.

— Adds ‘s’ and ‘t’ from bigger cluster that includes ‘p’:

J

N
.
®
®
<
2/

| =@ |
a2 000000

el
@
N

®
®
O
O
e
/
|

e But still has problems:
— Dealing with hierarchical clusters.
— Yields many false positives if you have “global” outliers.
— Goldstein and Uchida [2016] recommend just using KNN.

Malware and Intrusion Detection Systems

* In antivirus software and software for network intrusion detection
systems, another method of outlier detection is common:

— “Signature-based” methods: keep a list of byte sequences that are known to be
malicious. Raise an alarm if you detect one.

— Typically looks for exact matches, so can be implemented very quickly.
* E.g., using data structures like “suffix trees”.

— Can’t detect new types of outliers, but if you are good at keeping your list of
possible malicious sequences up to date then this is very effective.

— Here is an article discussing why ML is *not* common in these settings:
* http://www.icir.org/robin/papers/oakland10-ml.pdf
* But this is now changing and ML is starting to appear in anti-virus software.

http://www.icir.org/robin/papers/oakland10-ml.pdf

Shingling: Decomposing Objects into Pars

We say that a program is a virus if it has a malicious byte sequence.
— We don’t try to compute similarity of the whole program.

This idea of finding similar “parts” is used in various places.

A key tool to be help us do this is “shingling”:
— Dividing an object into consecutive “parts”.
— For example, we previously saw “bag of words”.

Given the shingles, we can search for similar parts rather than
whole objects.

Shingling Applications

For example, n-grams are one way to shingle text data.

— |f we use tri-grams, the sentence “there are lots of applications of nearest
neighbours” would have these shingles:

n u ”n u

* {“there are lots”, “are lots of”, “lots of applications”, “of applications of”, “applications of

nearest”, “of nearest neighbours”}.

— We can find similar items using similarity/distance between sets.
* For example, using the Jaccard similarity.

Applications where finding similar shingles is useful:
— Detecting plagiarism (shared n-grams indicates copying).
— BLAST gene search tool (shingle parts of a biological sequence).
— Entity resolution (finding whether two citations refer to the same thing).
— Fingerprint recognition (shingles are “minutiae” in different image grid cells).

Shingling Practical Issues

In practice, you can save memory by not storing the full shingles.

Instead, define a hash function mapping from shingles to bit-
vectors, and just store the bit-vectors.

However, for some applications even storing the bit-vectors is too
costly:

— This leads to randomized algorithms for computing Jaccard score between
huge sets even if you don’t store all the shingles.

Conceptually, it’s still useful to think of the “bag of shingles” matrix:
— Xj;is 1" if object ‘i’ has shingle ‘j.

Minhash and Jaccard Similarity

Let h(x;) be the smallest index ‘j” where x; is non-zero (“minhash”).

Consider a random permutation of the possible shingles ‘j’:
— In Julia: randperm(d).
— The value h(x;) will be different based on the permutation.

Neat fact:
— Probability that h(x;) = h(x;) is the Jaccard similarity between x; and x;.

Proof idea:

— Probability that you stop with h(x;) = h(x;) is given by probability that x; =x;=1 for
a random ‘k’, divided by probability that at least one of x, =1 or x, =1 is true for a
random ‘K.

Low-Memory Randomized Jaccard Approximation

The “neat fact” lets us approximate Jaccard similarity without
storing the shingles.

First we generate a bunch of random permutations.
— In practice, use a random hash function to randomly map 1:d to 1:d.

For each example, go through its shingles to compute h(x;) for each
permutation.

— No need to store the shingles.

Approximate Jaccard(x;,x;) as the fraction of permutations where
h(x;)=h(x;).

