CPSC 340:
Machine Learning and Data Mining

Hierarchical Clustering
Fall 2017



Admin

* Assignment 1 is due Friday.
— Follow the assighment guidelines naming convention (al.zip/al.pdf).

* Assignment O grades posted on Connect.



Last Time: Density-Based Clustering

 We discussed density-based clustering:
— Non-parametric clustering method.
— Based on finding connected regions of dense points.
— Can find non-convex clusters, and\/doesn’t cluster all points.
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Last Time: Density-Based Clustering

 We discussed density-based clustering:
— Non-parametric clustering method.
— Based on finding connected regions of dense points.
— Can find non-convex clusters, and doesn’t cluster all points.
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Differing Densities

* Consider density-based clustering on this data:




Differing Densities

* |ncrease epsilon and run it again:
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* There may be no density-level that gives you 3 clusters.



Differing Densities

e Here is a worse situation:

 Now you need to choose between coarse/fine clusters.
* Instead of fixed clustering, we often want hierarchical clustering.



Density-Based Hierarchical Clustering

* Asimple way to make a hierarchical DBSCAN:
— Fix minNeighbours, record clusters as you vary epsilon.

— Much more information than using a fixed epsilon.
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— QOutput is a tree of different clustering.




Application: Phylogenetics

Kit fox

We sequence genomes of a set of organisms.
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Application: Phylogenetics

Comparative method in linguistics studies evolution of languages:
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Application: Phylogenetics

e January 2016: evolution of fairy tales.

— Evidence that “Devil and the Smith”
goes back to bronze age.

— “Beauty and the Beast” published
in 1740, but might be 2500-6000 years old.
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Application: Phylogenetics

e January 2016: evolution of fairy tales.

— Evidence that “Devil and the Smith”
goes back to bronze age.

— “Beauty and the Beast” published
in 1740, but might be 2500-6000 years old.

* September 2016: evolution of myths.
— “Comic hunt” story:

* Person hunts animal that becomes constellation.

— Previously known to be at least 15,000 years old.

* May go back to paleololithic period.



Agglomerative (Bottom-Up) Clustering

e More common hierarchical method: agglomerative clustering.

1. Starts with each point in its own cluster.
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Agglomerative (Bottom-Up) Clustering

e More common hierarchical method: agglomerative clustering.
1. Starts with each point in its own cluster.
2. Each step merges the two “closest” clusters.
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Agglomerative (Bottom-Up) Clustering

e More common hierarchical method: agglomerative clustering.
1. Starts with each point in its own cluster.
2. Each step merges the two “closest” clusters.
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Agglomerative (Bottom-Up) Clustering

e More common hierarchical method: agglomerative clustering.
1. Starts with each point in its own cluster.
2. Each step merges the two “closest” clusters.
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Agglomerative (Bottom-Up) Clustering

e More common hierarchical method: agglomerative clustering.
1. Starts with each point in its own cluster.
2. Each step merges the two “closest” clusters.
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Agglomerative (Bottom-Up) Clustering

e More common hierarchical method: agglomerative clustering.
1. Starts with each point in its own cluster.
2. Each step merges the two “closest” clusters.
3. Stop with one big cluster that has all points.
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Agglomerative (Bottom-Up) Clustering

* Reinvented by different fields under different names (“UPGMA”).
* Needs a “distance” between two clusters.

A standard choice: distance between means of the clusters.

— Not necessarily the best, many choices exist (bonus slide).

* Cost is O(n3d) for basic implementation.
— Each step costs O(n?d), and each step might only cluster 1 new point.



Other Clustering Methods

Mixture models:
— Probabilistic clustering.

Mean-shift clustering:
— Finds local “modes” in density of points.

Bayesian clustering:
— A variant on ensemble methods.

— Averages over models/clustering,
weighted by “prior” belief in the model/clustering.

Biclustering:
— Simultaneously cluster objects and features.

Spectral clustering and graph-based clustering:

— Clustering of data described by graphs.

log, ratio to median
~2 2

- Hissing data




(pause)



Motivating Example: Finding Holes in Ozone Layer

 The huge Antarctic ozone hole was “discovered” in 1985.

* |t had been in satellite data since 1976:
— But it was flagged and filtered out by quality-control algorithm.



Outlier Detection

e Qutlier detection:
— Find observations that are “unusually different” from the others.
— Also known as “anomaly detection”.
— May want to remove outliers, or be interested in the outliers themselves (security).
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 Some sources of outliers:
— Measurement errors.
— Data entry errors.
— Contamination of data from different sources.
— Rare events.



Applications of Outlier Detection

Data cleaning.
Security and fault detection (network intrusion, DOS attacks).
Fraud detection (credit cards, stocks, voting irregularities).

Transaction Date - Posted Date Transaction Details Debit Credit

Aug. 27, 2015 Aug. 28, 2015 Fd BEAN AROUND THE WORLD VANCOUVER, $10.95
BC

Detecting natural disasters (underwater earthquakes).
Astronomy (find new classes of stars/planets).
Genetics (identifying individuals with new/ancient genes).



Classes of Methods for Outlier Detection

Model-based methods.
Graphical approaches.
Cluster-based methods.
Distance-based methods.

Al S

Supervised-learning methods.

* Warning: this is the topic with the most ambiguous “solutions”.



But first...

e Usually it’s good to do some basic sanity checking...

(Egg | Milk | Fish | Wheat | Shellfish_| Peanuts | - | ick? _
0 0.7 0 0.3 0 1

0 0
0.3 0.7 0 0.6 -1 3 3 1
0 0 0 “sick” 0 1 1 0
03 07 1.2 0 0.10 0 0.01 -1
900 O 1.2 0.3 0.10 0 0 1

— Would any values in the column cause a Python/Julia “Type” error?
— What is the range of numerical features?

— What are the unique entries for a categorical feature?

— Does it look like parts of the table are duplicated?

* These types of simple errors are VERY common in real data.



Model-Based Outlier Detection

e Model-based outlier detection: >

30

1. Fit a probabilistic model. 25

2. Outliers are examples with low probability. s

10

 Example: -2
— Assume data follows normal distribution.
— The z-score for 1D data is given by:
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— “Number of standard deviations away from the mean”.
— Say “outlier” is |z| > 4, or some other threshold.




Problems with Z-Score

* Unfortunately, the mean and variance are sensitive to outliers.
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— Possible fixes: use quantiles, or sequentially remove worse outlier.
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e The z-score also assumes that data is “uni-modal”.

— Data is concentrated around the mean.
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Global vs. Local Outliers

* |s the red point an outlier?



Global vs. Local Outliers

* |s the red point an outlier? What if we add the blue points?
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Global vs. Local Outliers
* |s the red point an outlier? What if we add the blue points?
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* Red point has the lowest z-score.
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— In the first case it was a “global” outlier.

— In this second case it’s a “local” outlier:

* Within normal data range, but far from other points.

* |t's hard to precisely define “outliers”.



Global vs. Local Outliers

* |s the red point an outlier? What if we add the blue points?
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* Red point has the lowest z-score.
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— In the first case it was a “global” outlier.

— In this second case it’s a “local” outlier:

* Within normal data range, but far from other points.

* |t's hard to precisely define “outliers”.

— Can we have outlier groups?



Global vs. Local Outliers

* |s the red point an outlier? What if we add the blue points?
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* Red point has the lowest z-score.
— In the first case it was a “global” outlier.

— In this second case it’s a “local” outlier:

* Within normal data range, but far from other points.

* |t's hard to precisely define “outliers”.
— Can we have outlier groups? What about repeating patterns?
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Graphical Outlier Detection

* Graphical approach to outlier detection:

1. Look at a plot of the data.

2. Human decides if data is an outlier.

 Examples:
1. Box plot:

* Visualization of quantiles/outliers.
* Only 1 variable at a time.
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Graphical Outlier Detection

* Graphical approach to outlier detection:

1. Look at a plot of the data.

2. Human decides if data is an outlier.

 Examples:
1. Box plot.
2. Scatterplot:

e Can detect complex patterns.
* Only 2 variables at a time.
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Graphical Outlier Detection

* Graphical approach to outlier detection:
1. Look at a plot of the data.
2. Human decides if data is an outlier. ‘|
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1. Box plot. &7 P

2. Scatterplot. L; *;

3. Scatterplot array: ];‘ f
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Graphical Outlier Detection

* Graphical approach to outlier detection:
1. Look at a plot of the data.
2. Human decides if data is an outlie

0.06

004

e Examples: .
0oz |- British N
1. Box plot. Ioles s
v TR
2. Scatterplot. o e u
3. Scatterplot array. 002 |
4. Scatterplot of 2-dimensional PCA: oo} ‘

e ‘See’ high-dimensional structure. o

e But loses information and
sensitive to outliers. 0.08 : Y ~ o = T
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Cluster-Based Outlier Detection

e Detect outliers based on clustering:
1. Cluster the data.
2. Find points that don’t belong to clusters.

 Examples:

1. K-means:
* Find points that are far away from any mean.
* Find clusters with a small number of points.
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Cluster-Based Outlier Detection

* Detect outliers based on clustering:
1. Cluster the data.
2. Find points that don’t belong to clusters. o okl

9
 Examples: @/
1. K-means.
2. Density-based clustering:

e Qutliers are points not assigned to cluster.
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Cluster-Based Outlier Detection

* Detect outliers based on clustering:
1. Cluster the data.
2.
 Examples:
1. K-means.

Find points that don’t belong to clusters.

2. Density-based clustering.
3. Hierarchical clustering:

e QOutliers take longer to join other groups.
* Also good for outlier groups.
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Summary

Hierarchical clustering: more informative than fixed clustering.

Agglomerative clustering: standard hierarchical clustering method.
— Each point starts as a cluster, sequentially merge clusters.

Outlier detection is task of finding unusually different object.
— A concept that is very difficult to define.

— Model-based find unlikely objects given a model of the data.

— Graphical methods plot data and use human to find outliers.

— Cluster-based methods check whether objects belong to clusters.

Next time: “customers who bought this item also bought”.



III

“Quality Control”: Outlier Detection in Time-Series

* A field primarily focusing on outlier detection is quality control.
* One of the main tools is plotting z-score thresholds over time:

Levey-Jennings Graph
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* Usually don’t do tests like “|z,| > 37, since this happens normally.
* Instead, identify problems with tests like “|z,| > 2 twice in a row”.



Distances between Clusters

e Other choices of the distance between two clusters:

“Single-link”: minimum distance between points in clusters.
“Average-link”: average distance between points in clusters.
“Complete-link”: maximum distance between points in clusters.

— Ward’s method: minimize within-cluster variance.

“Centroid-link”: distance between a representative point in the cluster.
e Useful for distance measures on non-Euclidean spaces (like Jaccard similarity).

e “Centroid” often defined as point in cluster minimizing average distance to other
points.



Cost of Agglomerative Clustering

One step of agglomerative clustering costs O(n?d):
— We need to do the O(d) distance calculation between up to O(n?) points.
— This is assuming the standard distance functions.

We do at most O(n) steps:

— Starting with ‘n’ clusters and merging 2 clusters on each step, after O(n) steps
we’ll only have 1 cluster left (though typically it will be much smaller).

This gives a total cost of O(n3d).

This can be reduced to O(n?d log n) with a priority queue:
— Store distances in a sorted order, only update the distances that change.

For single- and complete-linkage, you can get it down to O(n?d).
— “SLINK” and “CLINK” algorithms.



Bonus Slide: Divisive (Top-Down) Clustering

Start with all objects in one cluster, then start dividing.

 E.g., run k-means on a cluster, then run again on resulting clusters.
— A clustering analogue of decision tree Iearning.
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