CPSC 340: Machine Learning and Data Mining

Hierarchical Clustering Fall 2017

Admin

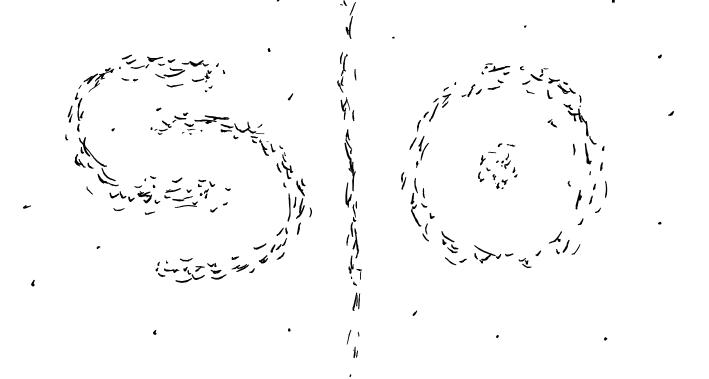
- Assignment 1 is due Friday.
 - Follow the assignment guidelines naming convention (a1.zip/a1.pdf).

Assignment 0 grades posted on Connect.

Last Time: Density-Based Clustering

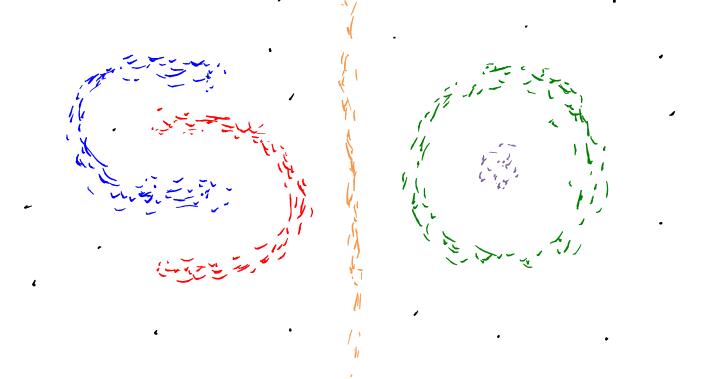
- We discussed density-based clustering:
 - Non-parametric clustering method.
 - Based on finding connected regions of dense points.

Can find non-convex clusters, and doesn't cluster all points.



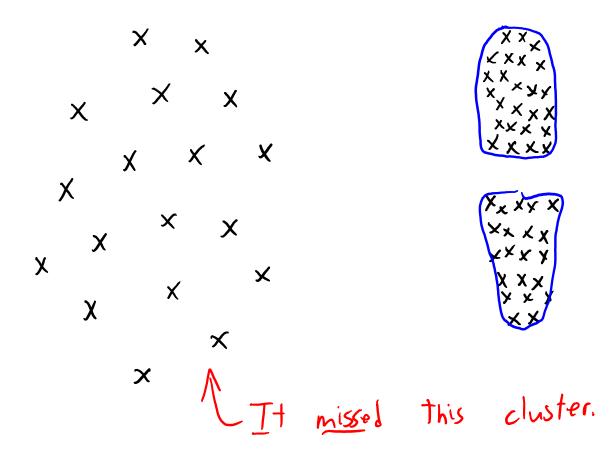
Last Time: Density-Based Clustering

- We discussed density-based clustering:
 - Non-parametric clustering method.
 - Based on finding connected regions of dense points.
 - Can find non-convex clusters, and doesn't cluster all points.



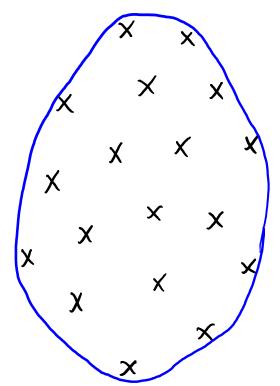
Differing Densities

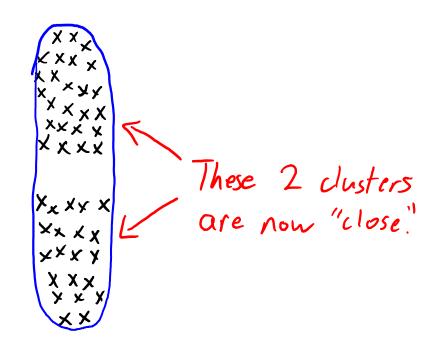
Consider density-based clustering on this data:



Differing Densities

Increase epsilon and run it again:

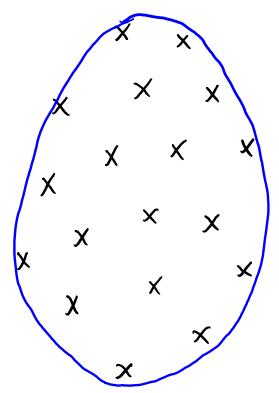


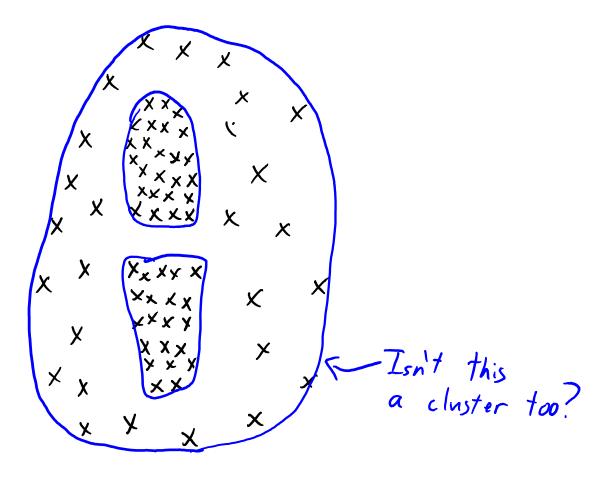


• There may be no density-level that gives you 3 clusters.

Differing Densities

• Here is a worse situation:



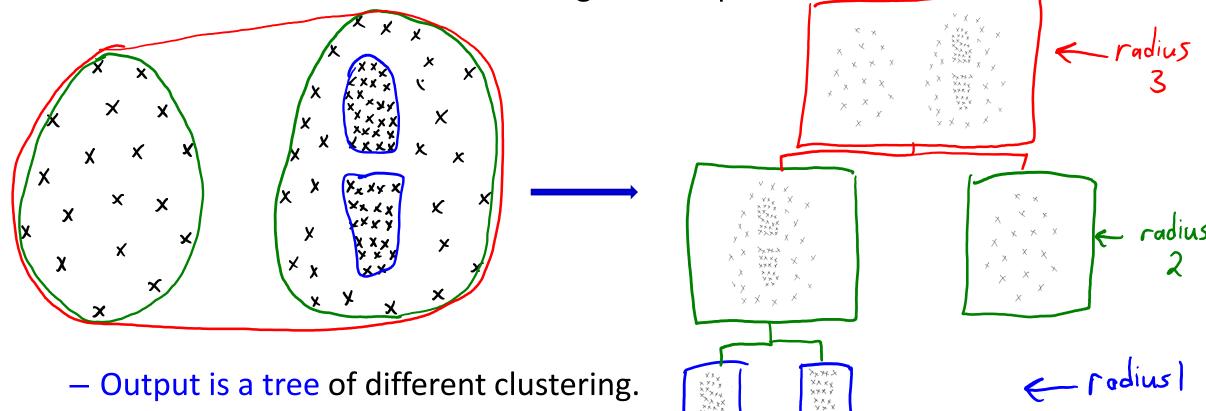


- Now you need to choose between coarse/fine clusters.
- Instead of fixed clustering, we often want hierarchical clustering.

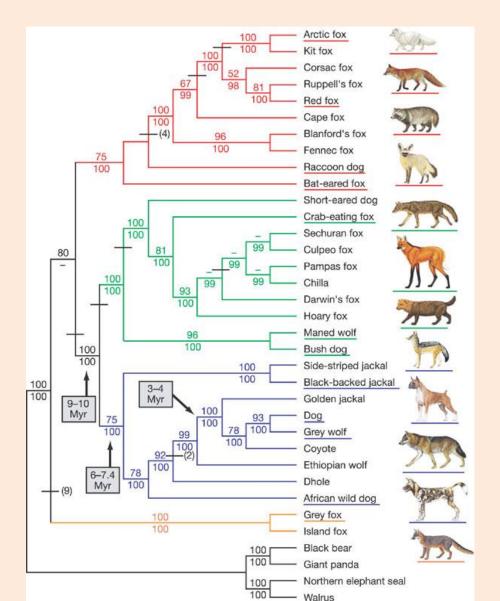
Density-Based Hierarchical Clustering

- A simple way to make a hierarchical DBSCAN:
 - Fix minNeighbours, record clusters as you vary epsilon.

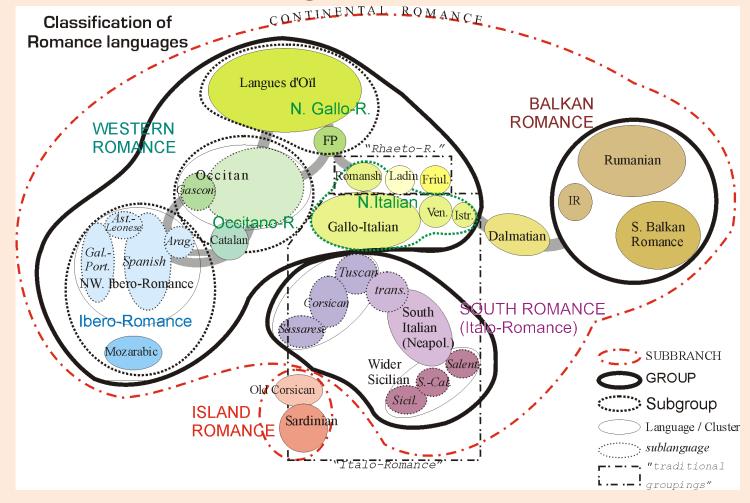
Much more information than using a fixed epsilon.



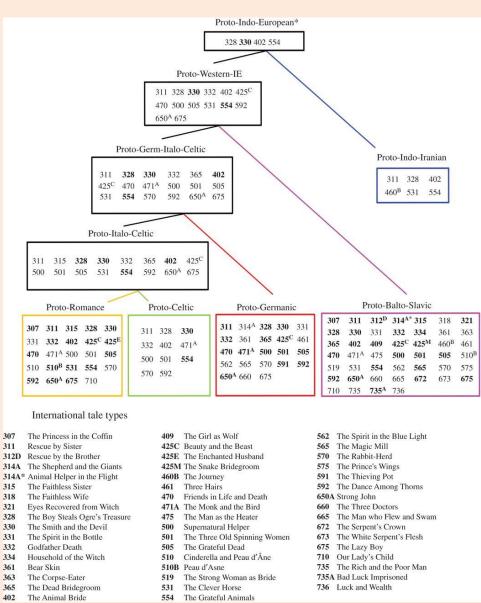
- We sequence genomes of a set of organisms.
- Can we construct the "tree of life"?
- Comments on this application:
 - On the right are individuals.
 - As you go left, clusters merge.
 - Merges are 'common ancestors'.
- More useful information in the plot:
 - Line lengths: chose here to approximate time.
 - Numbers: #clusterings across bootstrap samples.
 - Outgroups' (walrus, panda) are a sanity check.



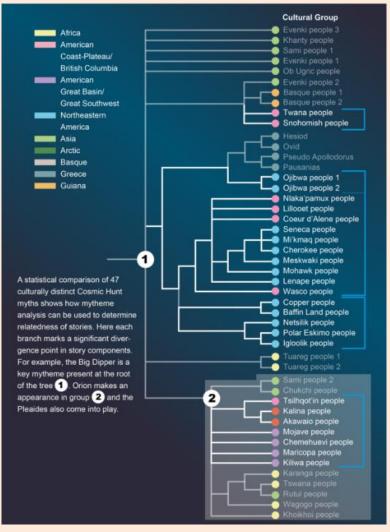
Comparative method in linguistics studies evolution of languages:



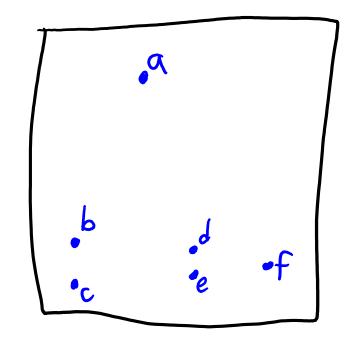
- January 2016: evolution of fairy tales.
 - Evidence that "Devil and the Smith" goes back to bronze age.
 - "Beauty and the Beast" published
 in 1740, but might be 2500-6000 years old.



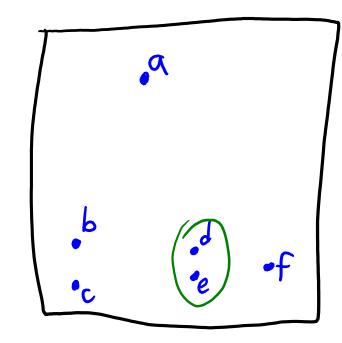
- January 2016: evolution of fairy tales.
 - Evidence that "Devil and the Smith" goes back to bronze age.
 - "Beauty and the Beast" published
 in 1740, but might be 2500-6000 years old.
- September 2016: evolution of myths.
 - "Comic hunt" story:
 - Person hunts animal that becomes constellation.
 - Previously known to be at least 15,000 years old.
 - May go back to paleololithic period.

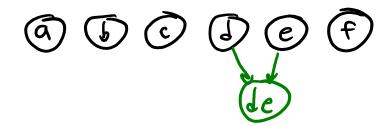


- More common hierarchical method: agglomerative clustering.
 - 1. Starts with each point in its own cluster.

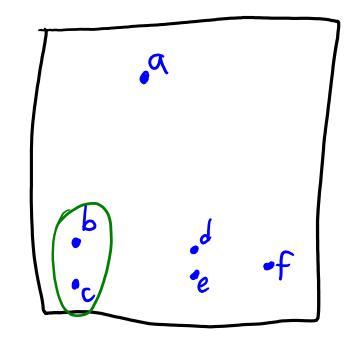


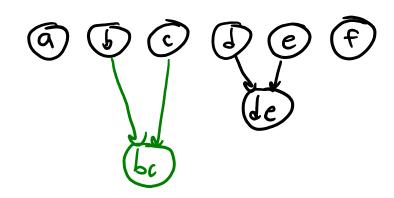
- More common hierarchical method: agglomerative clustering.
 - 1. Starts with each point in its own cluster.
 - 2. Each step merges the two "closest" clusters.



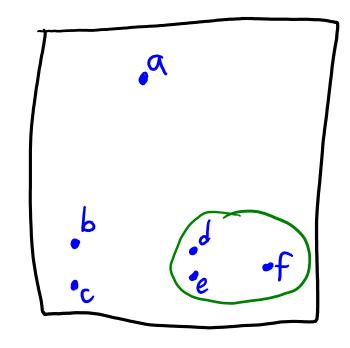


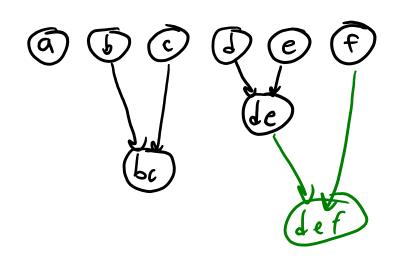
- More common hierarchical method: agglomerative clustering.
 - 1. Starts with each point in its own cluster.
 - 2. Each step merges the two "closest" clusters.



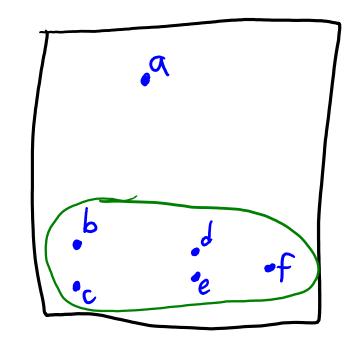


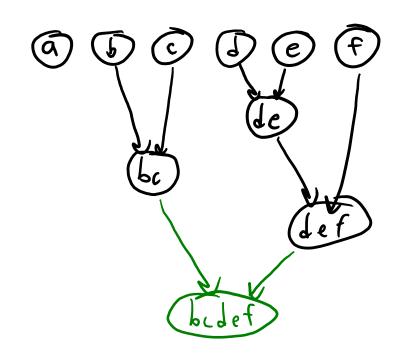
- More common hierarchical method: agglomerative clustering.
 - 1. Starts with each point in its own cluster.
 - 2. Each step merges the two "closest" clusters.



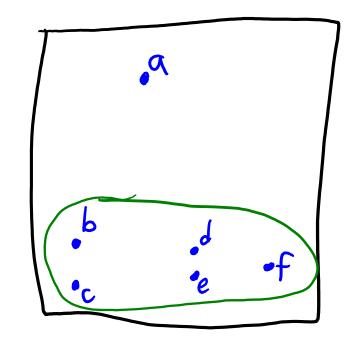


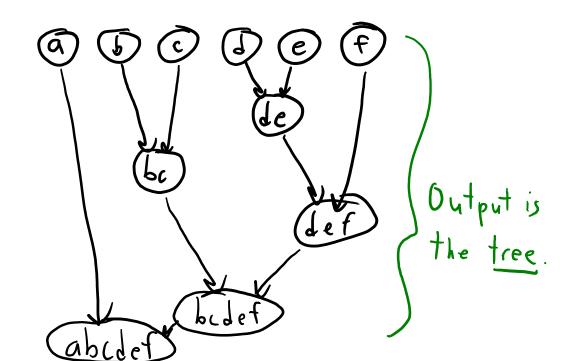
- More common hierarchical method: agglomerative clustering.
 - 1. Starts with each point in its own cluster.
 - 2. Each step merges the two "closest" clusters.





- More common hierarchical method: agglomerative clustering.
 - 1. Starts with each point in its own cluster.
 - 2. Each step merges the two "closest" clusters.
 - 3. Stop with one big cluster that has all points.





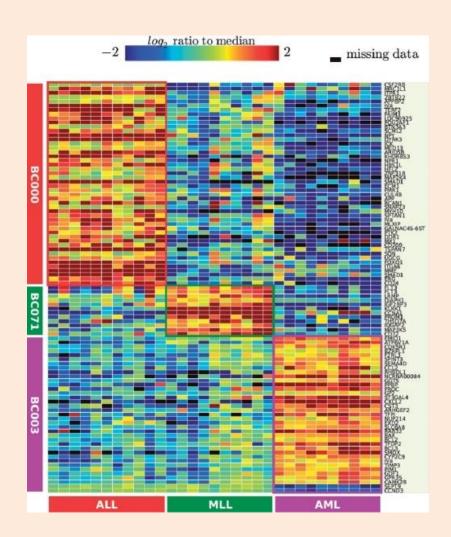
Reinvented by different fields under different names ("UPGMA").

Needs a "distance" between two clusters.

- A standard choice: distance between means of the clusters.
 - Not necessarily the best, many choices exist (bonus slide).
- Cost is O(n³d) for basic implementation.
 - Each step costs O(n²d), and each step might only cluster 1 new point.

Other Clustering Methods

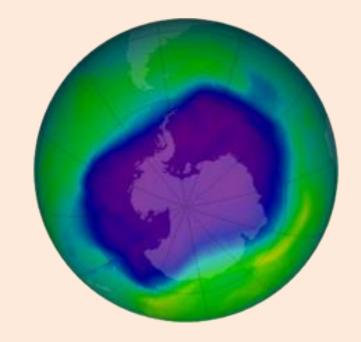
- Mixture models:
 - Probabilistic clustering.
- Mean-shift clustering:
 - Finds local "modes" in density of points.
- Bayesian clustering:
 - A variant on ensemble methods.
 - Averages over models/clustering,
 weighted by "prior" belief in the model/clustering.
- Biclustering:
 - Simultaneously cluster objects and features.
- Spectral clustering and graph-based clustering:
 - Clustering of data described by graphs.



(pause)

Motivating Example: Finding Holes in Ozone Layer

The huge Antarctic ozone hole was "discovered" in 1985.

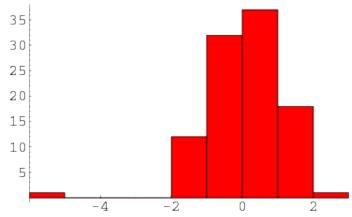


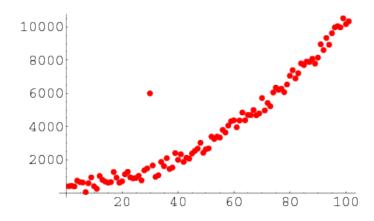
- It had been in satellite data since 1976:
 - But it was flagged and filtered out by quality-control algorithm.

Outlier Detection

Outlier detection:

- Find observations that are "unusually different" from the others.
- Also known as "anomaly detection".
- May want to remove outliers, or be interested in the outliers themselves (security).





• Some sources of outliers:

- Measurement errors.
- Data entry errors.
- Contamination of data from different sources.
- Rare events.

Applications of Outlier Detection

- Data cleaning.
- Security and fault detection (network intrusion, DOS attacks).
- Fraud detection (credit cards, stocks, voting irregularities).

- Detecting natural disasters (underwater earthquakes).
- Astronomy (find new classes of stars/planets).
- Genetics (identifying individuals with new/ancient genes).

Classes of Methods for Outlier Detection

- 1. Model-based methods.
- 2. Graphical approaches.
- 3. Cluster-based methods.
- 4. Distance-based methods.
- 5. Supervised-learning methods.

• Warning: this is the topic with the most ambiguous "solutions".

But first...

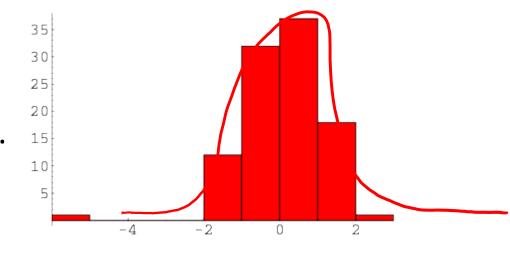
Usually it's good to do some basic sanity checking...

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	Peanuts	Sick?
0	0.7	0	0.3	0	0	0	1
0.3	0.7	0	0.6	-1	3	3	1
0	0	0	"sick"	0	1	1	0
0.3	0.7	1.2	0	0.10	0	0.01	-1
900	0	1.2	0.3	0.10	0	0	1

- Would any values in the column cause a Python/Julia "Type" error?
- What is the range of numerical features?
- What are the unique entries for a categorical feature?
- Does it look like parts of the table are duplicated?
- These types of simple errors are VERY common in real data.

Model-Based Outlier Detection

- Model-based outlier detection:
 - 1. Fit a probabilistic model.
 - 2. Outliers are examples with low probability.



Example:

- Assume data follows normal distribution.
- The z-score for 1D data is given by:

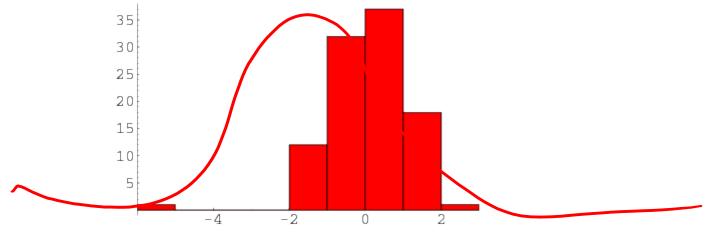
$$Z_i = \frac{X_i - u}{\sigma}$$

$$Z_{i} = \frac{X_{i} - u}{\varphi}$$
 where $u = \frac{1}{n} \stackrel{\wedge}{\underset{i=1}{\stackrel{\wedge}{\sum}}} x_{i}$ and $o = \sqrt{\frac{1}{n} \stackrel{\wedge}{\underset{i=1}{\stackrel{\wedge}{\sum}}} (x_{i} - u)^{2}}$

- "Number of standard deviations away from the mean".
- Say "outlier" is |z| > 4, or some other threshold.

Problems with Z-Score

Unfortunately, the mean and variance are sensitive to outliers.

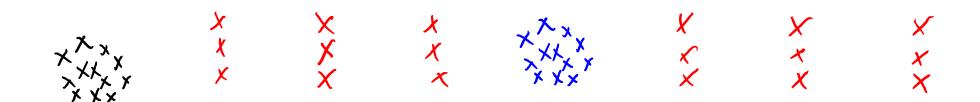


- Possible fixes: use quantiles, or sequentially remove worse outlier.
- The z-score also assumes that data is "uni-modal".
 - Data is concentrated around the mean.

• Is the red point an outlier?

- Red point has the lowest z-score.
 - In the first case it was a "global" outlier.
 - In this second case it's a "local" outlier:
 - Within normal data range, but far from other points.
- It's hard to precisely define "outliers".

- Red point has the lowest z-score.
 - In the first case it was a "global" outlier.
 - In this second case it's a "local" outlier:
 - Within normal data range, but far from other points.
- It's hard to precisely define "outliers".
 - Can we have outlier groups?

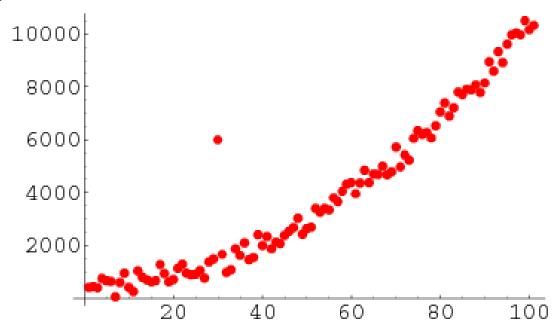


- Red point has the lowest z-score.
 - In the first case it was a "global" outlier.
 - In this second case it's a "local" outlier:
 - Within normal data range, but far from other points.
- It's hard to precisely define "outliers".
 - Can we have outlier groups? What about repeating patterns?

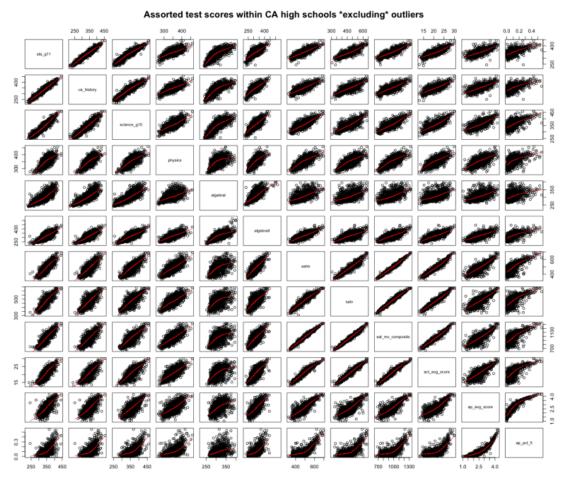
- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier.
- Examples:
 - 1. Box plot:
 - Visualization of quantiles/outliers.
 - Only 1 variable at a time.



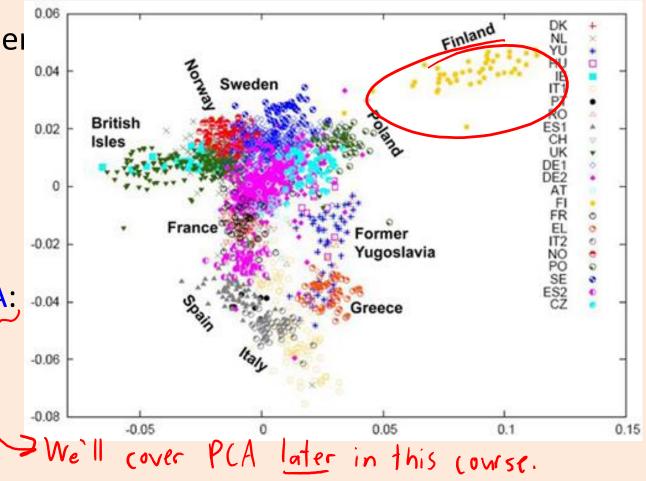
- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier.
- Examples:
 - 1. Box plot.
 - 2. Scatterplot:
 - Can detect complex patterns.
 - Only 2 variables at a time.



- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier.
- Examples:
 - 1. Box plot.
 - 2. Scatterplot.
 - 3. Scatterplot array:
 - Look at all combinations of variables.
 - But laborious in high-dimensions.
 - Still only 2 variables at a time.

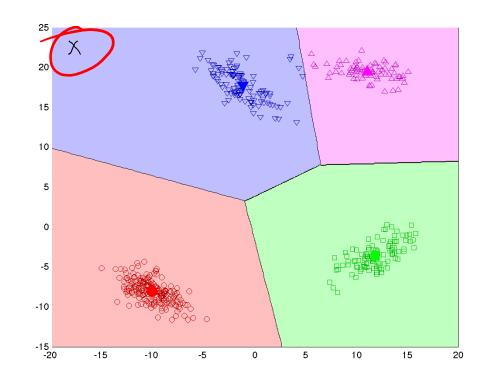


- Graphical approach to outlier detection:
 - 1. Look at a plot of the data.
 - 2. Human decides if data is an outlier
- Examples:
 - 1. Box plot.
 - 2. Scatterplot.
 - 3. Scatterplot array.
 - 4. Scatterplot of 2-dimensional PCA: 4.4
 - 'See' high-dimensional structure.
 - But loses information and sensitive to outliers.



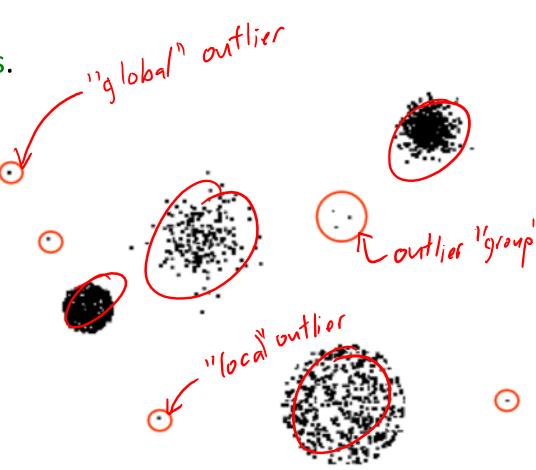
Cluster-Based Outlier Detection

- Detect outliers based on clustering:
 - 1. Cluster the data.
 - 2. Find points that don't belong to clusters.
- Examples:
 - 1. K-means:
 - Find points that are far away from any mean.
 - Find clusters with a small number of points.



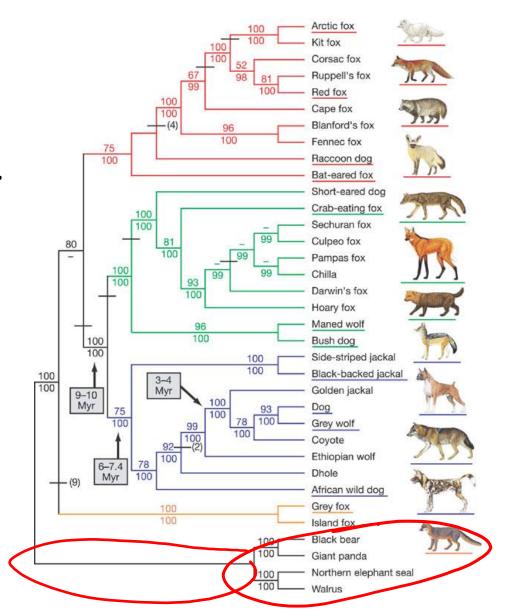
Cluster-Based Outlier Detection

- Detect outliers based on clustering:
 - 1. Cluster the data.
 - 2. Find points that don't belong to clusters.
- Examples:
 - 1. K-means.
 - 2. Density-based clustering:
 - Outliers are points not assigned to cluster.



Cluster-Based Outlier Detection

- Detect outliers based on clustering:
 - 1. Cluster the data.
 - 2. Find points that don't belong to clusters.
- Examples:
 - 1. K-means.
 - 2. Density-based clustering.
 - 3. Hierarchical clustering:
 - Outliers take longer to join other groups.
 - Also good for outlier groups.



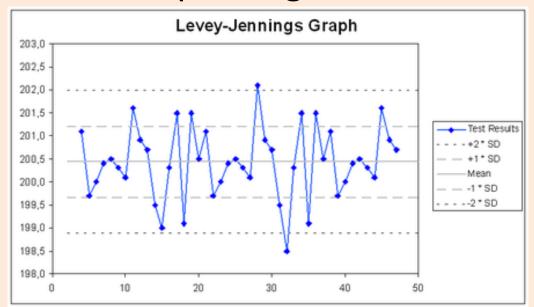
Summary

- Hierarchical clustering: more informative than fixed clustering.
- Agglomerative clustering: standard hierarchical clustering method.
 - Each point starts as a cluster, sequentially merge clusters.
- Outlier detection is task of finding unusually different object.
 - A concept that is very difficult to define.
 - Model-based find unlikely objects given a model of the data.
 - Graphical methods plot data and use human to find outliers.
 - Cluster-based methods check whether objects belong to clusters.

Next time: "customers who bought this item also bought".

"Quality Control": Outlier Detection in Time-Series

- A field primarily focusing on outlier detection is quality control.
- One of the main tools is plotting z-score thresholds over time:



- Usually don't do tests like " $|z_i| > 3$ ", since this happens normally.
- Instead, identify problems with tests like " $|z_i| > 2$ twice in a row".

Distances between Clusters

- Other choices of the distance between two clusters:
 - "Single-link": minimum distance between points in clusters.
 - "Average-link": average distance between points in clusters.
 - "Complete-link": maximum distance between points in clusters.
 - Ward's method: minimize within-cluster variance.
 - "Centroid-link": distance between a representative point in the cluster.
 - Useful for distance measures on non-Euclidean spaces (like Jaccard similarity).
 - "Centroid" often defined as point in cluster minimizing average distance to other points.

Cost of Agglomerative Clustering

- One step of agglomerative clustering costs O(n²d):
 - We need to do the O(d) distance calculation between up to $O(n^2)$ points.
 - This is assuming the standard distance functions.
- We do at most O(n) steps:
 - Starting with 'n' clusters and merging 2 clusters on each step, after O(n) steps we'll only have 1 cluster left (though typically it will be much smaller).
- This gives a total cost of O(n³d).
- This can be reduced to O(n²d log n) with a priority queue:
 - Store distances in a sorted order, only update the distances that change.
- For single- and complete-linkage, you can get it down to O(n²d).
 - "SLINK" and "CLINK" algorithms.

Bonus Slide: Divisive (Top-Down) Clustering

- Start with all objects in one cluster, then start dividing.
- E.g., run k-means on a cluster, then run again on resulting clusters.
 - A clustering analogue of decision tree learning.

