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1 Gradient of Linear Function

Consider a linear function of the form

f(w) = aTw,

where a and w are length-d vectors. We can derive the gradeint in matrix notation as follows:

1. Convert to summation notation:

f(w) =

d∑
j=1

ajwj ,

where aj is element j of a and wj is element j of w.

2. Take the partial derivative with respect to a generic element k:

∂

∂wk

 d∑
j=1

ajwj

 = ak.

3. Assemble the partial derivatives into a vector:

∇f(w) =


∂

∂w1
∂

∂w2

...
∂

∂wd

 =


a1
a2
...
ad


4. Convert to matrix notation:

∇f(w) =


a1
a2
...
ad

 = a.

So our final results is that
∇f(w) = a.

This generalizes the scalar case where d
dw [αw] = α. We can also consider general linear functions of the form

f(w) = aTw + β,

for a scalar β. But in this case we still have ∇f(w) = a since the y-intercept β does not depend on w.
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2 Gradient of Quadratic Function

Consider a quadratic function of the form

f(w) = wTAw,

where w is a length-d vector and A is a d by d matrix. We can derive the gradeint in matrix notation as
follows

1. Convert to summation notation:

f(w) = wT


∑n

j=1 a1jwj∑n
j=1 a2jwj

...∑n
j=1 adjwj


︸ ︷︷ ︸

Aw

=

d∑
i=1

d∑
j=1

wiaijwj .

where aij is the element in row i and column j of A. To help with computing the partial derivatives,
it helps to re-write it in the form

f(w) =

d∑
i=1

d∑
j=1

wiaijwj =

d∑
i=1

(aiiw
2
i +

∑
j 6=i

wiaijwj).

2. Take the partial derivative with respect to a generic element k:

∂

∂wk

 d∑
i=1

(aiiw
2
i +

∑
j 6=i

wiaijwj).

 = 2akkwk +
∑
j 6=k

wjajk +
∑
j 6=k

akjwj .

The first term comes from the akk term that is quadratic in wk, while the two sums come from the
terms that are linear in wk. We can move one akkwk into each of the sums to simplify this to

∂

∂wk

 d∑
i=1

(aiiw
2
i +

∑
j 6=i

wiaijwj).

 =

d∑
j=1

wjajk +

d∑
j=1

akjwj .

3. Assemble the partial derivatives into a vector:

∇f(w) =


∂

∂w1
∂

∂w2

...
∂

∂wd

 =


∑d

j=1 wjaj1 +
∑d

j=1 a1jwj∑d
j=1 wjaj2 +

∑d
j=1 a2jwj

...∑d
j=1 wjajd +

∑d
j=1 adjwj

 =


∑d

j=1 wjaj1∑d
j=1 wjaj2

...∑d
j=1 wjajd

 +


∑d

j=1 a1jwj∑d
j=1 a2jwj

...∑d
j=1 adjwj


4. Convert to matrix notation:

∇f(w) =


∑d

j=1 wjaj1∑d
j=1 wjaj2

...∑d
j=1 wjajd

 +


∑d

j=1 a1jwj∑d
j=1 a2jwj

...∑d
j=1 adjwj

 = ATw +Aw = (AT +A)w.
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So our final result is that
∇f(w) = (AT +A)w.

Note that if A is symmetric (AT = A) then we have (AT +A) = (A+A) = 2A so we have

∇f(w) = 2Aw.

This generalizes the scalar case where d
dw [αw2] = 2αw. We can also consider general quadratic functions of

the form

f(w) =
1

2
wTAw + bTw + γ.

Using the above results we have

∇f(w) =
1

2
(AT +A)w + b,

and if A is symmetric then
∇f(w) = Aw + b.
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