
CPSC 340 Assignment 5 (due November 25)

Latent-Factor Models

1 Principal Component Analysis

1.1 PCA by Hand

Consider the following dataset, containing 5 examples with 2 features each:

x1 x2
-2 -1
-1 0
0 1
1 2
2 3

Recall that with PCA we usually assume that the PCs are normalized (‖w‖ = 1), we need to center the
data before we apply PCA, and that the direction of the first PC is the one that minimizes the orthogonal
distance to all data points.

1. What is the first principal component?

2. What is the (L2-norm) reconstruction error of the point (3,3)? (Show your work.)

3. What is the (L2-norm) reconstruction error of the point (3,4)? (Show your work.)

1.2 Data Visualization

The function example PCA will load the animals dataset from a previous assignment, standardize the fea-
tures, and then give two unsatisfying visualizations of it. First it shows a plot of the matrix entries, which
has too much information and thus gives little insight into the relationships between the animals. Next it
shows a scatterplot based on two random features. You can click on the names of the points to reveal the
corresponding animals, but because of the binary features even a scatterplot matrix will show us almost
nothing about the data.

The function dimRedPCA, which applies the classic PCA method (orthogonal bases via SVD) for a given
k. Using this function, modify the demo so that the scatterplot uses the latent features zi from the PCA
model. Make a scatterplot of the two columns in Z, and use the gname function to label a bunch of the
points in the scatterplot. Hand in your modified demo and the scatterplot.

1.3 Data Compression

It is important to know how much of the information in our dataset is captured by the low-dimensional PCA
representation. In class we discussed the “analysis” view that PCA maximizes the variance that is explained

1



by the PCs, and the connection between the Frobenius norm and the variance of a centered data matrix X.
Use this connection to answer the following:

1. How much of the variance is explained by our two-dimensional representation from the previous ques-
tion?

2. How many PCs are required to explain 50% of the variance in the data?

2 PCA Generalizations

2.1 Robust PCA

The function example RPCA loads a dataset X where each row contains the pixels from a single frame of
a video of a highway. The demo applies PCA to this dataset and then uses this to reconstruct the original
image. It then shows the following 3 images for each frame (pausing and waiting for input between each
frame):

1. The original frame.

2. The reconstruction based on PCA.

3. A binary image showing locations where the reconstruction error is non-trivial.

Recently, latent-factor models have been proposed as a strategy for “background subtraction”: trying to
separate objects from their background. In this case, the background is the highway and the objects are the
cars on the highway. In this demo, we see that PCA does an ok job of identifying the cars on the highway
in that it does tend to identify the locations of cars. However, the results aren’t great as it identifies quite
a few irrelevant parts of the image as objects.

Robust PCA is a variation on PCA where we replace the L2-norm with the L1-norm,

f(Z,W ) =

n∑
i=1

d∑
j=1

|wT
j zi − xij |,

and it has recently been proposed as a more effective model for background subtraction. Write a new
function, dimRedRPCA, that uses a smooth approximation to the absolute value to implement robust PCA.

Hint: most of the work has been done for you in the function dimRedPCA alternate. This work implements
an alternating minimization approach to minimizing the (squared) PCA objective (without enforcing or-
thogonality). This gradient-based approach to PCA can be modified to use a smooth approximation of the
L1-norm. Note that the log-sum-exp approximation to the absolute value may be hard to get working due
to numerical issues, and a numerically-nicer approach is to use the “multi-quadric” approximation:

|α| ≈
√
α2 + ε,

where ε controls the accuracy of the approximation (a typical value of ε is 0.0001).

2.2 L1-Regularized and Binary Latent-Factor Models

We have a matrix X, where we have observed a subset of its individual elements. Let R be the set of indices
(i, j) where we have observed the element xij . We want to build a model that predicts the missing entries,
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so we use a latent-factor model with an L1-regularizer on the coefficients W and a separate L2-regularizer
on the coefficients Z,

f(Z,W ) =
1

2

∑
(i,j)∈R

[
(wT

j zi − xij)2
]

+ λW

d∑
j=1

[‖wj‖1] +
λZ
2

n∑
i=1

[
‖zi‖2

]
,

where the regularization parameters satisfy λW > 0 and λZ > 0.

1. What is the effect of λW on the sparsity of the parameters W and Z? What is the effect of λZ on the
sparsity of W and Z?

2. What is the effect of λZ on the two parts of the fundamental trade-off in machine learning? What is
the effect of k on the two parts?

3. Would the answers to (2) change if λW = 0?

4. Suppose each element of the matrix X is either +1 or −1 and our goal is to build a model that makes
the sign of wT

j zi match the sign of xij . Write down a (continuous) objective function that would be
more suitable.

3 Multi-Dimensional Scaling

The function example MDS loads the animals dataset and then applies gradient dsecent to minimize the
following multi-dimensional scaling (MDS) objective (starting from the PCA solution):

f(Z) =
1

2

n∑
i=1

n∑
j=i+1

(‖zi − zj‖ − ‖xi − xj‖)2. (1)

The result of applying MDS is shown below.

Although this visualization isn’t perfect (with “gorilla” being placed close to the dogs and “otter” being
placed close to two types of bears), this visualization does organize the animals in a mostly-logical way.

3.1 ISOMAP

Euclidean distances between very different animals are unlikely to be particularly meaningful. However, since
related animals tend to share similar traits we might expect the animals to live on a low-dimensional manifold.
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This suggests that ISOMAP may give a better visualization. Make a new function visualizeISOMAP that
computes the approximate geodesic distance (shortest path through a graph where the edges are only between
nodes that are k-nearest neighbour) between each pair of points, and then fits a standard MDS model (1)
using gradient descent. Hand in your code and the plot of the result when using the 3-nearest neighbours.

Hint: the function dijskstra can be used to compute the shortest (weighted) distance between two points in
a weighted graph. This function requires an n by n matrix giving the weights on each edge (use 0 as the
weight for absent edges). Note that ISOMAP uses an undirected graph, while the k-nearest neighbour graph
might be asymmetric. One of the usual heuristics to turn this into a undirected graph is to include an edge
i to j if i is a KNN of j or if j is a KNN of i. (Another possibility is to include an edge only if i and j are
mutually KNNs.)

3.2 ISOMAP with Disconnected Graph

An issue with measuring distances on graphs is that the graph may not be connected. For example, if you
run your ISOMAP code with 2-nearest neighbours then some of the distances are infinite. One heuristic
to address this is to set these infinite distances to the maximum distance in the graph (i.e., the maximum
geodesic distance between any two points that are connected), which will encourage non-connected points
to be far apart. Modify your ISOMAP function to implement this heuristic. Hand in your code and the plot
of the result when using the 2-nearest neighbours.
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