
CPSC 340 Assignment 4 (due November 14)

Linear Models Part 2

1 Logistic Regression with Sparse Regularization

If you run the function example logistic, it will:

1. Load a binary classification dataset containing a training and a validation set.

2. ‘Standardize’ the columns of X and add a bias variable.

3. Apply the same transformation to Xvalidate.

4. Fit a logistic regression model.

5. Report the number of features selected by the model (number of non-zero regression weights).

6. Report the error on the validation set.

Logistic regression does ok on this dataset, but it uses all the features (even though only the prime-numbered
features are relevant) and the validation error is above the minimum achievable for this model (which is 1
percent, if you have enough data and now which features are relevant). In this question, you will modify
this demo to use different forms of regularization to improve on these aspects.

1.1 L2-Regularization

Make a new function, logRegL2, that takes an input parameter λ and fits a logistic regression model with
L2-regularization. Specifically, while logReg computes w by minimizing

f(w) =

n∑
i=1

log(1 + exp(−yiwTxi)),

your new function logRegL2 should compute w by minimizing

f(w) =

n∑
i=1

[
log(1 + exp(−yiwTxi))

]
+
λ

2
‖w‖2.

Hand in your updated code. Using this new code, report the number of non-zeroes and the validation error
with λ = 1.

1.2 L1-Regularization

Make a new function, logRegL1, that takes an input parameter λ and fits a logistic regression model with
L1-regularization,

f(w) =

n∑
i=1

[
log(1 + exp(−yiwTxi))

]
+ λ‖w‖1.

1

Hand in your updated code. Using this new code, report the number of non-zeroes and the validation error
with λ = 1.

Hint: the function findMinL1 implements a proximal-gradient method to minimize the sum of a differentiable
function g and λ‖w‖1,

f(w) = g(w) + λ‖w‖1.

This function has a similar interface to findMin, except that you (a) only provide the code to compute the
function/gradient of the differentiable part g and (b) need to provide the value λ.

1.3 L0-Regularization

The function logRegL0 contains part of the code needed to implement the forward selection algorithm, which
approximates the solution with L0-regularization,

f(w) =

n∑
i=1

[
log(1 + exp(−yiwTxi))

]
+ λ‖w‖0.

The ‘for’ loop in this function is missing the part where we fit the model using the subset ind new, then
compute the score and updates the minScore/minInd. Modify the ‘for’ loop in this code so that it fits
the model using only the features ind new, computes the score above using these features, and updates
the minScore/minInd variables. Hand in your updated code. Using this new code, report the number of
non-zeroes and the validation error with λ = 1.

Note that the code differs a bit from what we discussed in class, since we assume that the first feature is
the bias variable and assume that the bias variable is always included. Also, note that for this particular
case using the L0-norm with λ is equivalent to what is known as the Bayesian information criterion (BIC)
for variable selection.

2 Convex Functions and MLE/MAP Loss Functions

This question gets you to explore two important concepts related to loss functions: the convexity of loss
functions (since convex loss functions can be minimized with gradient descent) and the probabilistic inter-
pretation of loss functions (since this allows us to define new loss functions when we encounter weird new
situations.

2.1 Showing Convexity from Definitions

Show that the following functions are convex:

1. Quadratic f(w) = aw2 + bw w ∈ R, a > 0
2. Negative logarithm f(w) = − log(aw) w > 0
3. Regularized regression (arbitrary norms) f(w) = ‖Xw − y‖p + λ‖w‖q p ≥ 1, q ≥ 1, λ ≥ 0
4. Logistic regression f(w) =

∑n
i=1 log(1 + exp(−yiwTxi)) w ∈ Rd

5. Support vector regression f(w) =
∑N
i=1 max{0, |wTxi − yi| − ε}+ λ

2 ‖w‖
2
2 λ ≥ 0

Hint: for the first two you can use the second-derivative test. For the last 3 you’ll have to use some of the
results in class regarding how combining convex functions can yield convex functions (see Lecture 17).

2

2.2 MAP Estimation

In class, we considered MAP estimation in a regression model where we assumed that:

• The likelihood p(yi|xi, w) is a normal distribution with a mean of wTxi and a variance of 1.

• The prior for each variable j, p(wj), is a normal distribution with a mean of zero and a variance of
λ−1.

Under these assumptions, we showed that this leads to the standard L2-regularized least squares objective
function:

f(w) =
1

2
‖Xw − y‖2 +

λ

2
‖w‖2.

For each of the alternate assumptions below, show how the loss function would change (simplifying as much
as possible):

1. We use a zero-mean Laplace prior for each variable with a scale parameter of λ−1, so that

p(wj) =
λ

2
exp(−λ|wj |).

2. We use a Laplace likelihood with a mean of wTxi and a scale of 1, so that

p(yi|xi, w) =
1

2
exp(−|wTxi − yi|).

3. We use a Gaussian likelihood where each datapoint where the variance is σ2 instead of 1,

p(yi|xi, w) =
1√

2σ2π
exp

(
− (wTxi − yi)2

2σ2

)
.

4. We use a Gaussian likelihood where each datapoint has its own variance σ2
i ,

p(yi|xi, w) =
1√

2σ2
i π

exp

(
− (wTxi − yi)2

2σ2
i

)
.

5. We use a (very robust) student t likelihood with a mean of wTxi and a degree of freedom of ν,

p(yi|xi, w) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
(wTxi − yi)2

ν

)− ν+1
2

,

where Γ is the “gamma” function (which is always non-negative).

Why is loss coming from the student t distribution “very robust”?

3 Multi-Class Logistic

The function example multiClass loads a multi-class classification dataset and fits a ‘one-vs-all’ classification
model using least squares, then reports the validation error and shows a plot of the data/classifier. The
performance on the validation set is ok, but could be much better. For example, this classifier never even
predicts that examples will be in classes 1 or 5.

3

3.1 One-vs-all Logistic Regression

Using the squared error on this problem hurts performance because it has ‘bad errors’ (the model gets
penalized if it classifies examples ‘too correctly’). Write a new function, logLinearClassifier, that replaces
the squared loss in the one-vs-all model with the logistic loss. Hand in the code and report the validation
error.

3.2 Softmax Classification

Using a one-vs-all classifier hurts performance because the classifiers are fit independently, so there is no
attempt to calibrate the columns of the matrix W . An alternative to this independent model is to use the
softmax probability,

p(yi|W,xi) =
exp(wTyixi)∑k
c=1 exp(wTc xi)

.

Here c is a possible label and wc′ is column c′ of W . Similarly, yi is the training label, wyi is column yi of
W , and in this setting we are assuming a discrete label yi ∈ {1, 2, 3}. Before we move on to implementing
the softmax classifier, let’s do a simple example:

Consider the dataset below, which has 10 training examples and 2 features:

X =



0 1
1 0
1 0
1 1
1 1
0 0
1 0
1 0
1 1
1 0


, y =



1
1
1
2
2
2
3
3
3
3


.

Suppose that you want to classify the following test example:

x̂ =
[
1 1

]
.

Suppose we fit a multi-class linear classifier using the softmax loss, and we obtain the following weight
matrix:

W =

[
+2 +2 +3
−1 +2 −1

]
Under this model, what class label would we assign to the test example? (Show your work.)

3.3 Softmax Loss

The loss function corresponding to the negative logarithm of the softmax probability is given by

f(W) =

n∑
i=1

[
−wTyixi + log

(
k∑

c′=1

exp(wTc′xi)

)]
.

Derive the derivative of this loss function with respect to a particular element Wjc. Try to simplify the
derivative as much as possible (but you can express the result in summation notation).

4

Hint: for the gradient you can use xij to refer to element j of example i. You can use an ‘indicator’ function,
I(yi = c), which is 1 when yi = c and is 0 otherwise. Note that you can use the definition of the softmax
probability to simplify the derivative.

3.4 Softmax Classifier

Make a new function, softmaxClassifier, which fits W using the softmax loss from the previous section instead
of fitting k independent classifiers. Hand in the code and report the validation error.

HInt: you may want to use the autoGrad function from A3 to check that your gradient code is correct.

5

