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Logistic Regression

Stochastic Gradient Descent
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Logistic Regression Model

» A discriminative probabilistic model for classification e.g.
spam filtering

Let x € RY be inputand y € {—1,1}
The probabilistic model with sigmoid function

v

v

TX)
1

1+ exp(—n)

ply =1|x) = o(w

a(n)

v

what is the probabilities of p(y = —1|x)?

1

P(y:—1|x):1—P(y:1|X):W
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Learning in Logistic Regression

Let X ¢ R™9 and y € {—1,1}" be training data
» we can use logistic loss to learn the parameter vector w

v

f(w) = Zlog + exp(—yiw' X))
/1

we want to find

v

w* = argmin f(w)
weRd

v

Since f(w) is convex function w.r.t. w we can use GD to
find w*
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Learning in Logistic Regression
» Regularized loss function
fw) = 1S log(1 wTx)) + 2wl
= 5 Z og(1 +exp(—y;w'X;)) + EHWH

i=1

» Exercise: find the gradient of regularized f(w)?
» Solution

fi(w) = log(1 + exp(—y;w’ x;))

: _ —YiXi
Vii(w) = 1+ exp(y,-WTx,-)

IXI
vi(w) = Z 1+ exp(y;wT’x;) AW




Learning in Logistic Regression

» Coding Exercise: we want to write a function to calculate
the gradient and function. The following code is given.
Write the code for loglos_subfunc.

function [f,g] = loglos(X,Y,w,lambda)

[n,d]=size(X);

g=zeros([d,1]);

f=0;

for i=1:n
[f_i,g_il=loglos_subfunc(X(i,:),Y(i),w);
g=g+g_1i;
f=f+f_1i;

end

g=g/n+lambdaxw;

f=f/n+lambda/2xsum(w.”2);

end



Learning in Logistic Regression

» Solution
>
- function [f_i,g_il=1loglos_subfunc(x_i,y_i,w)

Z_i=y_ixx_1i;
f_i=l+exp(-z_ixw);

bsGradient
g_i=-z_ix(1-1/f_1i);

%sfunction value f_i
f_i=log(f_1i);
- end
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Learning Logistic Regression

» Exercise: Let Z be the transformation of X using some
non-linear basis. What would be the new probabilistic
model, logistic loss and its gradient?

» Slolution:

ply =1|z) = o(w'z)

1 A
f(w) = - > log(1 + exp(—yiw z))) + §HWHQ
i=1

—YiZj
Aw
Z 1+ exp(yw’z) +
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Gradient Descent Cost for Big Data

» Assume our loss function has the following format:

1 n
=- D fi(w
i=1
e.g.
f(w) = Zlog + exp(—y;iw'x;))

» Using GD to find the best w:
Wit = Wi — o V(W)

» But cost of computing Vf(w) is O(n) because of the sum:

1 n
s E;Vfi(w)
1=

» Cost of each iteration in GD could be enormous when n is
large!
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Stochastic Gradient Descent(SGD) for Big Data

v

SGD algorithm: in each iteration pick a f; randomly and use
its gradient

i ~ unif(1, n) Wiy = Wt — afVEi(wy)

v

Vf; is an unbiased approximation of Vf
n 1 n
E[Vfi(w)] = ;p(i)vn(w) =~ 21 Vihi(w) = VH(w)
1= 1=

Cost of each iteration in SGD is constant

v

v

It does not move toward minimizer in each iteration, so is
slower than GD



SGD vs GD

» GD

» SGD
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Variance of SGD

Variance of SGD in each iteration:

v

Var[Vf(w)] Z IV fi(w) — Vi(w)|?

v

If variance is small, every step jumps in the right direction
If variance is large, many steps jump in wrong direction!

Variance can be controlled by decreasing step size or by
variance reduction technique

v

v
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Variance of SGD

To get convergence we need decreasing step sizes
But it cannot shrink too quickly
Two main conditions for decreasing step sizes:

v

v

v

oo
D ar=00 we can get everywhere (1)
t=1
oo
Z 0? < oo effect of variance goes to zero  (2)
t=1

v

Setting ay = O(1/t) satisfies the above conditions but it is
too slow

In practice:

ar = B/(t+7)
ar = O(1/v/t) or O(1/t%) for g € (0,1)

v



SGD for logistic Loss

oc=B/(t+7), fw)= 1> log(1 +exp(—ywTx)) + P

i=1

» Coding Exercise: Using the loglos_subfunc from previous
exercise, complete the SGD code for logistic loss.

function w=loglosSGD(X,Y,w_0,beta,gamma,lambda, T)

w=w_0;
[n,dl=size(X);

for t=1:T

end
end

» T: # of iteration
> Wy: initial value



SGD for logistic Loss

» Solution:
= function w=loglosSGD(X,Y,w_0,beta,gamma, lambda, T)

w=w_0;
[n,dl=size(X);

H for t=1:T
%generating i randomly
i=randi(n);

%scomputing the gradient of f_i
[f_i,g_il=loglos_subfunc(X(i,:),Y(i),w);

%step size for this iteration
alpha_t=beta/(t+gamma);

%SGD update with 12 regularizer
w=(1-alpha_txlambda)*w-alpha_t*g_i;

- end
» —end
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Variance Reduction Technique

» Using mini-batch
» In each iteration t, we make a random mini-batch B;
> Wip1 = Wi — (3] > tes, Vi(w)
» Variance is inversely proportional to the mini-batch size
» Using auxiliary memory: SAG method
» It uses an extra memory y with n cells and each cell y;
stores d value
» In each iteration t, we pick a f; randomly and evaluate the
gradient Vf;(w;)
» Store Vfi(w;) in y;
> W =we— S50
» cost of each iteration is constant



Variance Reduction Technique

» Using mini-batch

| 2

>

>

In each iteration t, we make a random mini-batch B;
Wept = W — 157 D jep, V(W)
Variance is inversely proportional to the mini-batch size
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>

vV vy vy
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Variance Reduction Technique

» Using mini-batch

| 2

>

>

In each iteration t, we make a random mini-batch B;
Wit = Wi — (57 D e, V(W)
Variance is inversely proportional to the mini-batch size

» Using auxiliary memory: SAG method

>

vV vy vy VvYyy

It uses an extra memory y with n cells and each cell y;
stores d value

In each iteration t, we pick a f; randomly and evaluate the
gradient Vf;(w;)

Store Vfi(w;) in y;

Wiy = Wt — % 27:1 Yi

cost of each iteration is constant

convergence is fast since we use constant step size

The memory requirement could be restrictive when n is
enormous
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