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Regularization



Regularization - Motivation

e Overfitting on the training set is a common problem
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Regularization - Motivation

e Overfitting on the training set is a common problem
e Having too many features and little data can lead to overfitting

e Underdetermined system: fewer equations than unknowns
e Either no solution or infinitely many solutions

e To address this: 1 5
F(w) = 511Xw = yI? + ZIwl®
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Regularization - Motivation

e Overfitting on the training set is a common problem
e Having too many features and little data can lead to overfitting

e Underdetermined system: fewer equations than unknowns
e Either no solution or infinitely many solutions

e To address this:

e Select a subset of features - L1 regularization
1 2
fF(w) = S1IXw = yII" + A lwly

e Reduce the magnitude of the weight parameters corresponding to possibly
noisy features - L2 and L1 regularization

1
f(w) = §|IXW—yll2+>\2HWH2



Regularization - Motivation

e Select a subset of features - L1 regularization
1
f(w) = SIIXw = yIP* + Ml |wll
e Reduce the magnitude of the weight parameters corresponding to possibly
noisy features - L2 and L1 regularization

1
f(w) = S11Xw — y[* + Xl [w]?
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Regularization - Definition

Regularization is a method that helps in preventing overfitting
e It controls the model complexity
Small values for the weights leads to a simpler model

A simpler model is less prone to overfitting

It penalizes the objective function to avoid the model from closely
matching possibly noisy data points




Regularization - Definition
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Regularization - Exercise

e Consider the following L2 regularized least square objective function
1
f(w) = S11Xw =yl + Xl [w?

e How does )\, affect the decision boundary ?



Regularization - Exercise

e Consider the following L2 regularized least square objective function
1
Fw) = S[[Xw — VI 4 Do wl?

e How does ), affect the decision boundary ?
e )\, controls a trade off between fitting the training set well and keeping
the weights small
e Large \> can lead to underfitting (a more linear, simple model)
e Small X2 can lead to overfitting (a more complicated model - larger range
of values for the parameters)
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Regularization - Exercise

e Consider the following L2 regularized least square objective function

1
f(w) = SIIXw = y|* + Xl |wlf®

e How does ), affect the decision boundary ?
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Radial Basis Function



RBF Basis - Motivation

e Observe the following dataset with two features X and Y

Data projected to R~2 (nonseparable)
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B
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e Can we fit a linear regression that seperates the two classes (blue and

red) sufficiently ?
e One approach is to transform the features into a new space where the

data is linearly separable
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RBF Basis

e We transform the data to a higher dimensional space

Data projected to R*2 (nonseparable)

Data in R~3 (separable)
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RBF Basis

e We can then separate the higher dimensional data using a linear plane

Data projected to R~2 (hyperplane projection shown)

1
Data in R~3 (separable w/ hyperplane)
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RBF Basis

e Given X € RV*D  transform X to Z € RN*N where

X =Xl
202

)

Zjj = exp(

where o controls the influence of nearby points

o Intuitively, Zj is a similarity value between sample i and sample j
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RBF Basis - Pros & Cons

Data projected to R~2 [hyperplane projection shown)

Data in R"3 (separable w/ hyperplane)
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e Pros

e Non-linear decision boundary
e For some applications, such similarity-based features are very robust

e Cons

e Non-parametric - grows with N
e Can lead to overfitting
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RBF Basis - Exercises

e Consider the following dataset

>

Il
NG
o N o

e Transform the dataset into the RBF space with 0 =1

Xipr =7
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RBF Basis - Exercises

e Least square function
f(w) = || Xw — yl[3

e Transform this objective function to one that uses RBF features
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RBF Basis - Exercises

e Least square function
f(w) = |IXw — I3

e Transform this objective function to one that uses RBF features

f(w) = || Xprw — yl[3
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RBF Basis - Exercises

e Least square function
f(w) = |IXw — I3

e Transform this objective function to one that uses RBF features

f(w) = || Xprw — yl[3
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RBF Basis - Exercises

Least square function

F(w) = [|Xw — y|I3

Transform this objective function to one that uses RBF features

F(w) = [ Xrw — yl[3

e Recall that RBF can lead to a model that is too complicated for the
dataset - potentially causing overfitting

Regularization helps against overfitting

Add the L1 and L2 regularization terms to f(w)
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RBF Basis - Exercises

e Least square function
f(w) = || Xw — yl[3

Transform this objective function to one that uses RBF features
F(w) = [ Xeorw — yl[3

Recall that RBF can lead to a model that is too complicated for the

dataset - potentially causing overfitting

Regularization helps against overfitting

Add the L1 and L2 regularization terms to f(w)

F(w) = [[Xrw = ylI3 + Aal|wl]1 + ol w3

Suggest one way to choose the values for A\; and A,
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RBF Basis - Exercises

e Least square function
f(w) = || Xw — yl[3

e Transform this objective function to one that uses RBF
fror (W) = || Xeprw — yl[5

Recall that RBF can lead to a model that is too complicated for the
dataset - potentially causing overfitting

Regularization helps against overfitting

Add the L1 and L2 regularization terms to f(w)

fror (W) = [ Xeorw — y1[3 + Arllwl]1 + Ao [w][3

How do we choose the values for \; and \» ?
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RBF Basis - Exercises

e Least square function
f(w) = || Xw — yl[3

Transform this objective function to one that uses RBF

fror (W) = || Xorw — y|[3

Recall that RBF can lead to a model that is too complicated for the
dataset - potentially causing overfitting

Regularization helps against overfitting

Add the L1 and L2 regularization terms to f(w)

fror (W) = [ Xeorw — yl[3 + Aallwl]1 + Ao [w][3

How do we choose the values for \; and \» ?

e Cross-validation
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RBF Basis - Exercises

e Given the regularized RBF model,
1 Ao
fror (W) = S| Xewrw — i3 + 7||W||§

solve for w

Data projected to R~2 (hyperplane projection shown)

Data in R~3 (separable w/ hyperplane)
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RBF Basis - Exercises

e Given the regularized RBF model,
1 Ao
fivr (W) = §|\Xrbfw -yl + 7||W||§

solve for w
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RBF Basis - Exercises

e Given the regularized RBF model,

1 Ao
fibr (W) = §|\XrbfW -yl + 7||W||§

solve for w
w = (X5 Xsr + 102) " Xy

ri
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Robust Regression




hted Least-Squares

e Least-squares estimates assumes that the residuals (w'x; — y;) are
normally distributed

e Outliers violate this assumption which can cause poor least-square models

Training Data.
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Weighted Least-Squares

e Weighted least squares error assigns a weight z; to each training example

Xi
1 n
f(w) = 5 ;Z;(WTX; —yi)?

e To reduce the influence of outliers on the decision boundary, assign lower
z; to the outlier observations
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Weighted Least-Squares

e To compute w that minimizes f(w) we need to derive the partial
derivatives of f(w) w.r.t each w; and update w; using gradient descent
e Given the one-dimensional weighted least square error function
Flw) = 23 2w — )
W)= = zi(wx; — yi
2 — 1 1 .yl
=

of (w
ow

—

derive
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hted Least-Squares

e Weighted least square error function
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Robust regression - lasso

e Problem: weighted least squares requires us to know the identity of the
outliers
e We can change the least square error function

f(w)=3 Z(WTX,' - y,-)2

i=1

to the L1-norm error function that is robust to outliers

Fw) = lyi — w'x
i=1
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Robust regression - lasso

e Problem: the L1 norm is not differentiable
A L1 regularization B L2 regularization
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Robust regression - lasso

e Problem: the L1 norm is not differentiable
e Solution: approximate the L1 norm and obtain a differential objective
function

e We can change the L1-norm objective function
Fw) = lyi—w’x|
i=1

to the approximated objective function that is differentiable
n
fw) = Z V(i —wTx)? +e
i=1

e |r| &= /r? + € where € is a small value
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Robust Regression - Exercise

e Given the approximation

derive
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Robust Regression - Exercise

e Given the approximation

flw) = Z Vi —wTx)2+e
i=1

Let =y, —w'x
ovrr+e  2r r
or 2VrP+e VrP4e
Of i wTx)x
Iw; i=1 (vi—wTx)?+e
Let v; = — =Wl __
(vi—wTxi)?+e

Vf(w) = -XTv
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Gradient Descent with minFunc




Gradient Descent

e Given the least square error function
f(w) =[|1Xw — ylf3

we want our model prediction Xw to be as close to y as possible
e The minimum is attained when V, f(w) =0

e We can minimize f(w) by using gradient descent
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Gradient Descent

e Gradient descent is an iterative method
e The idea is to compute a better estimation of w each iteration
e Each iteration, we update w; as follows

Of(w)

i = W; «
8W,'

where « is the step size
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Gradient Descent

Jw) :’Il/ Gradient
1
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Gradient Descent

In the file robustRegression.m

21 % Solve least squares problem
22 w = findMin(@funObj,w,100,X,y);

24 model.w = w;
25 model.predict = @predict;

27 end

29 function [yhat] = predict(model,Xtest)
30 w = model.w;

31 yhat = Xtest*w;

32 end

34 function [f,g] = fun0Obj(w,X,y)

36 end

e What should we write under funObj to minimize,
Fw) =D 3/ (i —wTx)> +e
i=1
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Gradient Descent

flw) = Z\/(y,- —wTx;)? +e
i=1

function [f,g] = funObj(w,X,y)
% Compute residual
r=Xw -y;

% Compute objective function
f = sum(sqrt(r.”2 + epsilon)));

% Compute sign-of-residual approximation
vV =r./(sqrt(r.”2 + epsilon));

% Compute gradienﬂ
g = X"y

end
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