Tutorial 2

CPSC 340: Machine Learning and Data Mining

Fall 2016

1/21

Overview

0 Decision Tree
@ Decision Stump
@ Decision Tree

Q Training, Testing, and Validation Set

e Naive Bayes Classifier

2/21

Decision Stump

@ Decision stump: simple decision tree with 1 splitting rule based
on 1 feature.

@ Binary example:

(windows==1?)

topic=talk.” topic=comp.*

@ Assigns a label to each leaf based on the most frequent label.

@ Most intuitive score: classification accuracy.

/21

The "newsgroups.mat” Dataset

@ The newsgroups.mat Matlab file contains the following objects:

@ X: A sparse binary matrix. Each row corresponds to a post, and
each column corresponds to a word from the word list. A value of 1
means that the word occurred in the post.

@ v: A vector with values 1 through 4, with the value corresponding to
the newsgroup that the post came from.

© Xtest and ytest: the word lists and newsgroup labels for additional
newsgroup posts.

© groupnames: The names of four newsgroups.

©@ wordlist: A list of words that occur in posts to these newsgroups.

4/21

Example: Binary Decision Stump for newsgroups.mat

function [model]
% Fits a decision
% assuming that|

decisionStump (X, v)

is categorical

yhat (X(:,d) [=
errors
% Compar

1) = maxLabell:
sum(yhat~=y) ;
tom

so far

mum e

[N,D] = size(X): if errors < minErrer
3 Compute number of class labl % This is the lowest error, store this
€ = max(y}: minError = errors;
% Rddress the trivial case do not split splitVariable = d;
count = zeros(C,1); splitLabell = maxLabell:
for n = 1:N splitlabel¢ = maxlabel0;
count(y(n}) = count(y(n)) + 17 end
end end
[maxCount,maxLabel] = max (count): end
minError = sum(y ~= maxLabel); model.splitVariable = splitVariable:
splitVariable = []; model.labell = splitlabell;
splitLabelo = maxlabel; model.label0 = splitLabeld;
splitLabell = []: model.predictFunc = @predict;

B 5 5 ena
% Loop over featuzes locking for the best split Fometion (]
if any(y ~= ¥(1)) [T,D] =
for d :

% Count number of class labels the feature is 1, 0

countl = zeros(C,1):

for n = find(X(:,)=)" v =

countl(y(n)) = counti{y(n)) + 1: for

end

count0 = count-countl;

¢ Compute majority class

[maxCount, maxLabell] = max(countl);

[maxCount, maxLabel0] = max{count0):

% Compute number of classification errors cna

yhat = maxLabelO%ones(N,1);:

= predict (model,X)
size (X):

if isempty(model.splitVariable)

model.label0O*ones (T, 1)

zeres (T,1);
n = 1:T
if X(n,model.splitVariable)
¥(n,1) = model.labell;
else
vin,1) =

model.labelo;
end

5/21

value

Decision Tree

@ Decision stumps have only 1 rule based on only 1 feature.

e Very limited class of models: usually not very accurate for most
tasks.

@ Decision trees allow sequences of splits based on multiple
features.

e Very general class of models: can get very high accuracy.
e However, it's computationally infeasible to find the best decision
tree.

@ Most common decision tree learning algorithm in practice:

e Greedy recursive splitting.

6/21

Problem 1: Decision Tree for newsgroups.mat

@ For a maximum depth of 2, 1) draw the learned decision tree.
and 2) re-write the function as a simple program using if/else
statements.

function [model] = decisionTree(X,y,mexDepuh)
groups.mat N
size) B decision tree that splits
: 5 ng that X is bi: .11,
decisionlzes (X, v, depth); 04,0] = siza(0);
rror

model.predictFuncimodel,X); % Learn a decision svump

error = sum(vhat -= v)/N: splitiodel = decisionStump (K, v

% 2nd 2 pradict

if maxDepth <= 1 || isempty(spliciodel.splitVarisble)

cached the maximum depth oz the decision stusp doss
& nothing, uss the desision stump

model = splithodel
else

= decision tzes to each split, decreasing meximam depth by 1
4 = splitMedel. splitVarizble:

model.splitModel = splictodel

% Find indic n each split
)

Vi

splitlndexl
splitTndexo

5 szeh splic

((splitIndexl,:),y(splitIndexl) ,maxDepth-1);
Tree (£(splicIndex0, :) ,y(splicIndex0) ,maxDepsh-1) ;
unction
model.pradiccFunc = Gpredict:
end
ana

7/21

Solution: Decision Tree for newsgroups.mat

>» model.splitModel
ans =
splhtVariable: a8
labell: 1
labelO: 4

predictFunc: @predict

>> model.subModell

ans =
gplitVariable: &
labell: 2

labelO: 1

predictFunc: Epredict

>> model.subModell

ans =
splitVariable: 8%
labell: 2
labell: 4

predictFunc: Epredict

8/21

Solution: Decision Tree for newsgroups.mat

@ Decision tree:

feature98==1?)

v T

feature89==1? feature6==1?
r:/ \r‘es N:/ &is
class4 class2 class1 class2

@ If-else statement:

if ¥ (i,98) ==1
if X (i, 8)==1
return 2
else
recurn 1
end
else
if X(i,89)==1
return 2
else
return 4
end
end

9/21

Training, Testing, and Validation Set

@ Given training data, we would like to learn a model to minimize
error on the testing data

@ How do we decide decision tree depth?
@ We care about test error.

@ But we can’t look at test data.

@ One answer: Use part of your train data to approximate test error.
@ Split training objects into training set and validation set:

e Train model on the training data.
e Test model on the validation data.

10/21

Cross-Validation

@ Isn't it wasteful to only use part of your data?
@ k-fold cross-validation:

e Train on k-1 folds of the data, validate on the other fold.
o Repeat this k times with different splits, and average the score.

[t 110000 01000000000000000
[ferston 2} DO OV IDIIDT 090000000

E==E ooooooocomaooco

[Rertion ea— 00000000000000033333

Figure 1: Adapted from Wikipedia.

@ Note: if examples are ordered, split should be random.

11/21

Problem 2: 2-Fold Cross Validation for

newsgroups.mat

@ Modify the code below to compute the 2-fold cross-validation
scores on the training data alone.

@ Find the depth that would be chosen by cross-validation.

% Load X and vy wariable
load newsgroups.mat
[H,D] = =size(X):

T = length(ytest):
depth = 5;

model = .decisionTree (X,v,depth);

vhat = model.predictFunc (model, X) ;
errorTrain = sum(vhat ~= y)/N:

vhat =model.predictFunc (model, Xtest) ;
errorTest = sum(yvhat ~= ytest)/T;

12/21

Solution: 2-Fold Cross Validation for newsgroups.mat

¥ wvariable

7SJroups.mat

[N,D] = size(X);

Xtest = ¥ (floor(N/2) + 1 M , :):
ytest= y (floor(N/2) +1 : N) :

¥ = X ([1:flooc(H/2) , :) H

v =y (1: floor(M/2)):

mindepth = -1 ; minError = Inf;

for depth =1 :15
errorTrain = Q; errorlest = 0;
for i =1:2
[N,D] = size(X):;
T = length(vtest):
model = decisionTree (X, y,depth):
vhat = model.predictFunc (model,X);
errorTrain = errorTrain +sum(vhat ~= y)/H;
vhat = model.predictFunc (model,Xtest):
errorTest = errorTest + sum(yhat ~= ytest)/T;
[X, Xtest]=mySwap (Xtest, X);
[v,vtest] = mySwap (vtest,v) -
end
dispierrorTest/2) ;
if errorTest/2 < minError
minError= errorTest/2;
mindepth = depth;
end
end
disp (minFrror); disp(mindepth);

13/21

Naive Bayes Classifier

@ Naive Bayes is a probabilistic classifier.

e Based on Bayes’ theorem.
e Strong independence assumption between features.

14/21

Naive Bayes Classifier

@ Naive Bayes is a probabilistic classifier.

e Based on Bayes’ theorem.

e Strong independence assumption between features.
@ In the rest of this tutorial,

o We use y; for the label of object i (element i of y).

o We use z; for the features of object i (row 7 of X).

e We use z;; for feature j of object i.

e We use d for the number of features in object i.

14/21

Naive Bayes Classifier

@ Bayes’ rule

Posterior probability

pilx;) =

Likelihood Prior probability

p(xilydr i)
p(x;)

Evidence

15/21

Naive Bayes Classifier

@ Bayes’ rule

Posterior probability Likelihood Prior probability
Ol = p(xilydp (o)
o p(x;)

Evidence

@ Since the denominator does not depend on y;, we are only
interested in the numerator:

p(yilwi) oc p(aslys)p(y:)

15/21

Naive Bayes Classifier

@ The numerator is equal to the joint probability:

p(xilyi)p(yi) = p(@i i) = p(Tit, s Tid, Yi)

16/21

Naive Bayes Classifier

@ The numerator is equal to the joint probability:

p(xilyi)p(yi) = p(@i i) = p(Tit, s Tid, Yi)

@ Chain rule:

P(Xi1, oo Tia, Yi) = D(Ti1|Ti2, ooy Tids Yi)D(Ti2, - Tid, Ys)

= p(fvn \%‘27 ooy Tidy yi)p($i2|$i3, ooy Tids yi) p(ﬂvid|yi)p(yi)

16/21

Naive Bayes Classifier

@ The numerator is equal to the joint probability:

p(xilyi)p(yi) = p(@i i) = p(Tit, s Tid, Yi)

@ Chain rule:

P(Xi1, oo Tia, Yi) = D(Ti1|Ti2, ooy Tids Yi)D(Ti2, - Tid, Ys)

= p(@i1|Tigs s Tid, Yi)P(Ti2| Tizs oy Tid, Yi) - P(Tialys)p(Ys)
@ Each feature in z; is independent of the others given y;:

p(xij|$ij+17 oy Lids l/z‘) = p(xz‘j|yi)

16/21

Naive Bayes Classifier

@ The numerator is equal to the joint probability:

p(xilyi)p(yi) = p(@i i) = p(Tit, s Tid, Yi)

@ Chain rule:
p(wil, ---vfidayi) :P($i1|$127 ~-~7fﬂid,yi)P(9€i2, -~~,$¢d,yi)

= p(@i1|Tigs s Tid, Yi)P(Ti2| Tizs oy Tid, Yi) - P(Tialys)p(Ys)
@ Each feature in z; is independent of the others given y;:

p(xij|$ij+17 oy Lids l/z‘) = p(xz‘j|yi)

@ Therefore:
d
p(yi,zi) o< p(yi) [[plwislvi)
j=1
16/21

Problem 4: Naive Bayes Classifier

headache runny nose fever flu
N Y Y N
Y N N N
N N N N
Y Y Y Y
Y Y N Y
N N Y Y

17/21

Problem 4: Naive Bayes Classifier

headache runny nose fever flu
N Y Y N
Y N N N
N N N N
Y Y Y Y

Y Y N Y
N N Y Y

headache runny nose fever flu

Y N Y ?

17/21

Solution: Naive Bayes Classifier

@ We need

p(headache=Y|[flu=N) 1/3
p(headache=Y [flu=Y) 2/3
p(runny nose=N[flu=N) |2/3
p(runny nose=N[flu=Y) |1/3

p(fever=Y|[flu=N) 1/3
p(fever=Y|flu=Y) 2/3
plflu=N) 1/2
p(flu=Y) 1/2

18/21

Solution: Naive Bayes Classifier

@ We need

p(headache=Y|[flu=N) 1/3
p(headache=Y [flu=Y) 2/3
p(runny nose=N[flu=N) |2/3
p(runny nose=N[flu=Y) |1/3

p(fever=Y|[flu=N) 1/3
p(fever=Y|flu=Y) 2/3
p(flu=N) 1/2
p(flu=Y) 1/2

@ p(flu = Nlheadache = Y, runny nose = N, fever =Y)
p(headache = Y|flu = N)p(runny nose = N|flu = N)p(fever =

Yiflu=N)p(flu=N) =12 %31 =0.0370

18/21

Solution: Naive Bayes Classifier

@ We need

p(headache=Y|[flu=N) 1/3
p(headache=Y [flu=Y) 2/3
p(runny nose=N[flu=N) |2/3
p(runny nose=N[flu=Y) |1/3

p(fever=Y|[flu=N) 1/3
p(fever=Y|flu=Y) 2/3
p(flu=N) 1/2
p(flu=Y) 1/2

@ p(flu = Nlheadache = Y, runny nose = N, fever =Y)
p(headache = Y|flu = N)p(runny nose = N|flu = N)p(fever =
Yiflu=N)p(flu=N) =12 %31 =0.0370

@ p(flu = Yheadache = Y, runny nose = N, fever =Y)
p(headache = Y|flu = Y)p(runny nose = N|flu = Y)p(fever =

Yiflu=Y)p(flu=Y)=2x1x2x1=00741

18/21

Solution: Naive Bayes Classifier

@ We need

p(headache=Y|[flu=N) 1/3
p(headache=Y [flu=Y) 2/3
p(runny nose=N[flu=N) |2/3
p(runny nose=N[flu=Y) |1/3

p(fever=Y|[flu=N) 1/3
p(fever=Y|flu=Y) 2/3
p(flu=N) 1/2
p(flu=Y) 1/2

@ p(flu = Nlheadache = Y, runny nose = N, fever =Y)
p(headache = Y|flu = N)p(runny nose = N|flu = N)p(fever =
Yiflu=N)p(flu=N) =12 %31 =0.0370

@ p(flu = Yheadache = Y, runny nose = N, fever =Y)
p(headache = Y|flu = Y)p(runny nose = N|flu = Y)p(fever =

Yiflu=Y)p(flu=Y)=2x3x2x1=0.0741

3 3 3
headache runny nose fever flu
Y N Y Y

18/21

Bayes’ Theorem

@ Bayes’ Theorem enables us to reverse probabilities:

19/21

Problem 3: Prosecutor’s fallacy
00".

@ A crime has been committed in a large city and footprints are
found at the scene of the crime. The guilty person matches the
footprints, p(#|G) = 1. Out of the innocent people, 1% match the
footprints by chance, p(F| ~ G) = 0.01. A person is interviewed
at random and his/her footprints are found to match those at the
crime scene. Determine the probability that the person is guilty,
or explain why this is not possible, p(G|F) =?

@ Let F be the event that the footprints match.
@ Let G be the event that the person is guilty
@ ~ G be the event that the person is innocent.

20/21

Solution: Prosecutor’s fallacy
000
‘ .‘
(~G)

_ p(FIG)p(G) _ p(F|G)p(G)
p(F) p(F|G)p(G) +p(F| ~ G)p

p(G|F)

21/21

Solution: Prosecutor’s fallacy
000
‘ .‘
(~G)

_ p(FIG)p(G) _ p(F|G)p(G)
p(F) p(F|G)p(G) +p(F| ~ G)p

p(G|F)

@ p(G) =? — Impossible!

21/21

	Decision Tree
	Decision Stump
	Decision Tree

	Training, Testing, and Validation Set
	Naive Bayes Classifier

