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Random Walk on Graph

Page Rank Algorithm



Label Propagation on Graph

» Assume a strongly connected graph G = (V, A)



Label Propagation on Graph

» Assume a strongly connected graph G = (V, A)

» V: set of nodes



Label Propagation on Graph

» Assume a strongly connected graph G = (V, A)
> V: set of nodes

> A: adjacency matrix



Label Propagation on Graph

v

Assume a strongly connected graph G = (V, A)

v

V: set of nodes

v

A: adjacency matrix

v

Two type of nodes: labeled and unlabeled



Label Propagation on Graph

v

Assume a strongly connected graph G = (V, A)

v

V: set of nodes

v

A: adjacency matrix

v

Two type of nodes: labeled and unlabeled
Label is either +1 or -1

v



Label Propagation on Graph

v

Assume a strongly connected graph G = (V, A)

V: set of nodes

v

v

A: adjacency matrix

v

Two type of nodes: labeled and unlabeled
Label is either +1 or -1

v

v

Gaol: assign a label to unlabeled nodes.
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Random Walk for Label Propagation

» Random Walk on Graph: we jump from one node to another
one with some probability
» Label propagation algorithm

» start from an unlabeled node v

» do k times random walk starting from v and store the output
labels

» do majority vote among the stored labels
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Random Walk for Label Propagation

Random Walk Algorithm
> repeat until you find a label
> let v be the node you are in and has d, neighbours
» if v is unlabeled, with uniform probability d% pick one of its
neighbours and jump to that node
> if v is labeled
> with probability ﬁ output its label

» with uniform probability ﬁ pick one of its neighbours jump
to that node



Exercise

Assume we are given adjacency matrix, a labellist, a matrix where
the first column contains node numbers and the second column
contains class labels and starting node, write code for random walk
algorithm.



RW code

function [v] = runRandomWalk (A, labelList,w)

while 1
if any(labellist(:,1) == v)
neighbours = find(&A(v,:)):
nNeighbours = length(neighbours);
ind = ceil (rand* (nNeighbours+1));
if ind == nNeighbours+l
ind = find(labellist(:,1l)==v);

return

else
v = neighbours(ind);
end
else

neighbours = find(A(v,:)):
nNeighbours = length(neighbours);
ind = ceil (rand*nNeighbours):
v = neighbours (ind):

end

end

end
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Ranking Problem

» The ranking problem:
» Input: a large set of objects (and possibly a query object).
» Output option 1: score of each object (and possibly for query).
» Qutput option 2: ordered list of most relevant objects
(possibly for query).
» Examples:
» Country comparisons (Global Hunger Index)
Academic journals (Impact factor).
Sports/gaming (Elo and TrueSkill)
Internet search engines

v VvYyy



PageRank

» Goal: ranking webpages based on some score or weight



PageRank

» Goal: ranking webpages based on some score or weight

» Assuming that we have n webpages and let the score of
webpage i be p;, and P = (p;) be a vector of size n



PageRank

» Goal: ranking webpages based on some score or weight

» Assuming that we have n webpages and let the score of
webpage i be p;, and P = (p;) be a vector of size n
» Make the directed webpage graph G
» node / has an edge into node j if there is a link from page / to
Jjie i—j.
» Assume this graph is strongly connected and aperiodic and
does not have absorbing node



PageRank

» Goal: ranking webpages based on some score or weight

» Assuming that we have n webpages and let the score of
webpage i be p;, and P = (p;) be a vector of size n
» Make the directed webpage graph G
» node / has an edge into node j if there is a link from page / to
jie i—j.
» Assume this graph is strongly connected and aperiodic and
does not have absorbing node
» Let m; be the number of outgoing edges from node j and
m = (m;) be a vector of size n



PageRank

» Goal: ranking webpages based on some score or weight
» Assuming that we have n webpages and let the score of
webpage i be p;, and P = (p;) be a vector of size n
» Make the directed webpage graph G
» node / has an edge into node j if there is a link from page / to
jie i—j.
» Assume this graph is strongly connected and aperiodic and
does not have absorbing node
» Let m; be the number of outgoing edges from node j and
m = (m;) be a vector of size n
> Let A be the adjacency matrix for G i.e. Aj =1if i = jo.w.
Aj=0



PageRank

>

Goal: ranking webpages based on some score or weight

» Assuming that we have n webpages and let the score of

webpage i be p;, and P = (p;) be a vector of size n
Make the directed webpage graph G
» node / has an edge into node j if there is a link from page / to
jie i—j.
» Assume this graph is strongly connected and aperiodic and
does not have absorbing node
Let m; be the number of outgoing edges from node j and
m = (m;) be a vector of size n
Let A be the adjacency matrix for G i.e. Aj =1if i — jo.w.
Aj=0
Let Z = AT (diag(m))~1



PageRank

» Goal: ranking webpages based on some score or weight
» Assuming that we have n webpages and let the score of
webpage i be p;, and P = (p;) be a vector of size n
» Make the directed webpage graph G
» node / has an edge into node j if there is a link from page / to
jie i—j.
» Assume this graph is strongly connected and aperiodic and
does not have absorbing node
» Let m; be the number of outgoing edges from node j and
m = (m;) be a vector of size n
> Let A be the adjacency matrix for G i.e. Aj =1if i = jo.w.
Aj=0
> Let Z = AT (diag(m))~?
(Z)jj: probability of jumping from page j to page i via a link

v



PageRank

» Goal: ranking webpages based on some score or weight

» Assuming that we have n webpages and let the score of
webpage i be p;, and P = (p;) be a vector of size n
» Make the directed webpage graph G
» node / has an edge into node j if there is a link from page / to
jie i—j.
» Assume this graph is strongly connected and aperiodic and
does not have absorbing node
» Let m; be the number of outgoing edges from node j and
m = (m;) be a vector of size n
> Let A be the adjacency matrix for G i.e. Aj =1if i = jo.w.
Aj=0
> Let Z = AT (diag(m))~?
> (Z);j: probability of jumping from page j to page i via a link
> But we can go directly from page j to i by entering the
address of page i in the address-bar of browser
» add some small amount to all (Z); and normalize!
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PageRank

For some d € (0,1) let E = ones(n,n) and T = %E +dZ

Now with transition matrix T for a webpage graph G, we have

v

v

pP=TP

v

Each p; is a probability, so Y7, pi =1

v

With two above equations, we can find all p;s by solving
corresponding linear system



PageRank: Exercise

Let d = %. For the following webpage graph, find A, m, Z and T.
Then make the linear system and solve it and find P.
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PageRank: Solution
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PageRank: Solution

Combining two equations, we get

17 1 7 0
116 116 176 176 p1 0
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16 16 16 16 P4
1 1 1 1 1
0.25
0.25
= 0.25

<
)
&



	Random Walk on Graph
	Page Rank Algorithm

