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Admin

* Assighnment 1 :
— 2 late days to hand it in before Wednesday’s class.
— 3 late days to hand it in before Friday’s class.
— 0 after that.

* Assignment 2 coming tonight.



Norms in 1-Dimension

* We can view absolute value, | x|, as ‘size’ or ‘length’ of a number:
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* |t satisfies three intuitive properties of ‘length’:
1. Only ‘0’ has a ‘length’ of zero.
2. Multiplying ‘x’ by constant ‘o’ multiplies length by |a|:
“Absolute homogeneity”: |ax| = |a] | x].

“If will twice as long if you multiply by 2”.

3. Length of ‘x+y’ is not more than length of X’ plus length of ‘y’:
“Triangle” inequality: |x +y| <= |x| + |y]. X 5 Y g J !
 Think of “how far you travel”. -y —

Xty



Norms in 2-Dimensions

In 1-dimension, only scaled absolute values satisfy the 3 properties.

In 2-dimensions, there is no unique function satisfying them.

We call any function satisfying them a norm:
— Measures of “size” or “length” in 2-dimensions.

Three most common examples:
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Norms as Measures of Distance

* By taking norm of difference, we get a “distance” between vectors:
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Norms in d-Dimensions

 We can generalize these common norms to d-dimensional vectors:
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— L,: all values are equal. "\\/\/\)
— L,: bigger values are more important (because of squaring). . >

— L_.: only biggest value is important. \s wrilt a2 0



Last Time: K-Means Clustering

 We want to cluster data:
— Assign objects to groups.
 K-means clustering:
— Define groups by “means” s

— Assign objects to nearest mean. of R

(Then update means during training.) S e et ;.‘..'-.:-Qﬁ"

* Also used for vector quantization: T S —

— Use means as prototypes of groups.



K-Means Initialization

e K-means is fast but sensitive to initialization.

* Classic approach to initialization: random restarts.
— Run to convergence using different random initializations.
— Choose the one that minimizes average squared distance of data to means.

* Newer approach: k-means++
— Random initialization that prefers means that are far apart.
— Yields provable bounds on expected approximation ratio.



K-Means++

e Steps of k-means++:
1. Selectinitial mean w, as a random x.
2. Compute distance d.. of each object x; to each mean w..

Cl:r, m — “X. = W ”2

3. For each object ‘i’ set d. to the distance to the closest mean.
Al = V“O'V\ %Aica

4. Choose next mean by sampling an example ‘i’ proportional to (d)%.

P| X do‘ e ‘7' '? Con be
5. Keep returning to step 2 until we have k-means. f oIJ' done in
):l
* Expected approximation ratio is O(log(k)). obakihty TL“JO(:Z
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Choose X as pext mean
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K-Means++

First mean is a
random example.
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K-Means++

Weight examples by
distance to mean squared.
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K-Means++
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K-Means++
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Sample mean proportional
to minimum distances squared




K-Means++

. o8’

Weight examples by squared
distance to mean.
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Start k-means: assignh objects
to the closest mean.
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Update the mean
of each cluster.
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Shape of K-Means Clusters

 K-means clusters are formed by the intersection of half spaces.
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Shape of K-Means Clusters

 K-means clusters are formed by the intersection of half-spaces.
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Shape of K-Means Clusters
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Shape of K-Means Clusters
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Shape of K-Means Clusters
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Shape of K-Means Clusters
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Shape of K-Means Clusters

Which regions are pel in gfees ster?
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Shape of K-Means Clusters
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Shape of K-Means Clusters

25

1o The | Arecsection gl 20

W\
ACCeN Hc\V\ﬂLfF 15

T hese taee Nald “SRus. w

r
p=S

tn

10

-15 ‘

-20 -15 -10 5 o . — _

20



Shape of K-Means Clusters

* |ntersection of half-spaces form a convex set:
— Line between any two points in the set stays in the set.

Z

\ Not Convex
Convex )

(g




Shape of K-Means Clusters
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K-Means with Non-Convex Clusters

Mon-convex banana-shaped data points
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K-Means with Non-Convex Clusters

kmeans with k=2

K-means cannot separate
non-convex clusters
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K-Means with Non-Convex Clusters

K-means cannot separate
non-convex clusters

Though over-clustering can help
(next class)
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Application: Elephant Range Map

Find habitat area of African elephants.
— Useful for assessing/protecting population.

Build clusters from observations of locations.

Clusters are non-convex:

— affected by vegetation, mountains,
rivers, water access, etc.

We don’t want to “partition” data: Wy

— Some points have no cluster.




Motivation for Density-Based Clustering

* Density-based clustering:
— Clusters are defined by all the objects in “dense” regions.
— Objects in non-dense regions don’t get clustered.

* |t's a non-parametric clustering method:

— Clusters can become more complicated the more data we have.
— No fixed number of clusters ‘k’. >
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Other Potential Applications

nere are high crime regions of a city?
nere should taxis patrol?
here does Iguodala make/miss shots?

nich products are similar to this one?

nich pictures are in the same place? A e

nere can protein ‘dock’?
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Density-Based Clustering

* Density-based clustering algorithm (DBSCAN) has two parameters:

— Radius: minimum distance between points to be considered ‘close’.

* Objects within this radius are called “reachable”.
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Density-Based Clustering

* Density-based clustering algorithm (DBSCAN) has two parameters:

— Radius: minimum distance between points to be considered ‘close’.

* Objects within this radius are called “reachable”.

— MinPoints: number of reachable points needed to define a cluster.

* If you have minPoints “reachable points”, you are called a “core” point.
E.3-7 7 min Poinls =3
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Density-Based Clustering
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Density-Based Clustering
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Density-Based Clustering
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Density-Based Clustering
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Density-Based Clustering in Action

Interactive demo:
https://www.naftaliharris.com/blog/visualizing-dbscan-clustering



https://www.naftaliharris.com/blog/visualizing-dbscan-clustering

Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.



Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.
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Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.
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Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.



Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.
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Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.
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Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.
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Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.
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Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.
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Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.
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Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.



Density-Based Clustering
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Density-Based Clustering

* Each “core” point defines a cluster:
— Consisting of “core” point and all its “reachable” points.

* Merge clusters if “core” points are “reachable” from each other.



Density-Based Clustering

e Pseudocode for DBSCAN:

— For each example x::
* If x; is already assigned to a cluster, do nothing.
* Test whether xi is a ‘core’ point (less than minPoints neighbours with distances < ‘r’).

— If x; is not core point, do nothing.
— If x; is a core point, “expand” cluster.

— “Expand” cluster function:
* Assign all x; within distance ‘r’ of core point x; to cluster.
* For each newly-assigned neighbour x; that is a core point, “expand” cluster.



Density-Based Clustering Issues

Some points are not assigned to a cluster.

— Good or bad, depending on the application. byinls ol ,,Amo/v/.\

Ambiguity of “non-core” (boundary) points: 4,/ befwetn Clustess

Sensitive to the choice of radius and minPoints.

— Otherwise, not sensitive to initialization (except for boundaries).

If you get a new example, finding cluster is expensive.
— Need to compute distances to training points.

In high-dimensions, need a lot of points to ‘fill’ the space.



Summary

Norms:

— Ways to measure “size” in higher dimensions.

K-means++:

— Randomized initialization of k-means with good expected performance.
Shape of K-means clusters:

— Intersection of half-spaces, which forms convex sets.

Density-based clustering:
— “Expand” and “merge” dense regions of points to find clusters.
— Useful for finding non-convex connected clusters.

Next time:
* Discovering the tree of life.



Bonus Slide: Lp-norms

* The L,-, L,-, and L.,-norms are special cases of Lp-norms:
d o
- P
3=

* This gives a norm for any (real-valued) p > 1.
— The L_.-norm is limit as ‘p’ goes to o-.

* For p <1, notanorm because triangle inequality not satisfied.



Bonus Slide: Squared/Euclidean-Norm Notation

We're using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

d
|zl = Ej:] wf
)l = 355 |wj]-

If the subscript is omitted, we mean the 2-norm:
]| = ll]l2-

It we want to talk about the sguared value of the norm we use a superscript of "2"

I3 = E;LI t”?-
2
lell? = (0 hsl) -

It we omit the subscript and have a superscript of "2, we're taking about the squared L2-norm:

2 = 325, w}



Bonus Slide: Uniform Sampling

e Standard approach to generating a random number from {1,2,...,n}:
1. Generate a uniform random number ‘U’ in the interval [0,1].
2. Return the largest index ‘i’ such that u <i/n.

* Conceptually, this o!ivlides iptel/rval [0,1] into ‘n” equal-size pieces:
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* This assumes p,=1/nforall ‘". N
"L provablity of picking number %1



Bonus Slide: Non-Uniform Sampling

Standard approach to generating a random number for general p..

1. Generate a uniform random number ‘U’ in the interval [0,1].
2. Return the largest index ‘i’ such that u < 2 Pi
J:l

Conceptually, this divides interval [0,1] into non-equal-size pieces:

ML -
[v';[ A~ o
\—’W/J L\:!\*“ g \;{,—: ,’nl\
F\(L ‘ Pl ru"é\
e A

Can sample from a generic discrete probability distribution in O(n).
If you need to generate ‘m’ samples:

— Cost is O(n + m log (n)) with binary search and storing cumulative sums.



Bonus Slide: Discussion of K-Means++

Recall the objective function k-means tries to minimize:

‘F(\S‘/ L3 = % )\x,-"wd,.)}/ga

O\l M ang all
afSlt)M /\’3

The initialization of ‘W’ and ‘¢’ given by k-means++ satisfies:

EL¥ ‘—3\3 = O log(K)

F(w¥,c¥) - .
el o N Nl meun anl clustel ) acc o divg
r G B0 5“”\’ o dojoctive

Get good clustering with high probability by re-running.
However, there is no guarantee that ¢ is a good clustering.



