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Admin

• Assignment 1 :

– 2 late days to hand it in before Wednesday’s class.

– 3 late days to hand it in before Friday’s class.

– 0 after that.

• Assignment 2 coming tonight.



Norms in 1-Dimension

• We can view absolute value, |x|, as ‘size’ or ‘length’ of a number:

• It satisfies three intuitive properties of ‘length’:
1. Only ‘0’ has a ‘length’ of zero.

2. Multiplying ‘x’ by constant ‘α’ multiplies length by |α|:
• “Absolute homogeneity”: |αx| = |α||x|.

• “If will twice as long if you multiply by 2”.

3. Length of ‘x+y’ is not more than length of ‘x’ plus length of ‘y’:
• “Triangle” inequality: |x + y| <= |x| + |y|.

• Think of “how far you travel”.



Norms in 2-Dimensions

• In 1-dimension, only scaled absolute values satisfy the 3 properties.

• In 2-dimensions, there is no unique function satisfying them.

• We call any function satisfying them a norm:

– Measures of “size” or “length” in 2-dimensions.

• Three most common examples:



Norms as Measures of Distance

• By taking norm of difference, we get a “distance” between vectors:



Norms in d-Dimensions

• We can generalize these common norms to d-dimensional vectors:

• These norms place different “weights” on large values:
– L1: all values are equal.

– L2: bigger values are more important (because of squaring).

– L∞: only biggest value is important.



Last Time: K-Means Clustering

• We want to cluster data:

– Assign objects to groups.

• K-means clustering:

– Define groups by “means”

– Assign objects to nearest mean.
(Then update means during training.)

• Also used for vector quantization:

– Use means as prototypes of groups.



K-Means Initialization

• K-means is fast but sensitive to initialization.

• Classic approach to initialization: random restarts.

– Run to convergence using different random initializations.

– Choose the one that minimizes average squared distance of data to means.

• Newer approach: k-means++

– Random initialization that prefers means that are far apart.

– Yields provable bounds on expected approximation ratio.



K-Means++

• Steps of k-means++:

1. Select initial mean w1 as a random xi.

2. Compute distance dic of each object xi to each mean wc.

3. For each object ‘i’ set di to the distance to the closest mean.

4. Choose next mean by sampling an example ‘i’ proportional to (di)
2.

5. Keep returning to step 2 until we have k-means.

• Expected approximation ratio is O(log(k)).



K-Means++



K-Means++

First mean is a 
random example.



K-Means++

Weight examples by 
distance to mean squared.



K-Means++

Sample mean proportional
to distances squared.



K-Means++

Weight examples by squared
distance to nearest mean.



K-Means++

Sample mean proportional
to minimum distances squared.



K-Means++

Weight examples by squared
distance to mean.



K-Means++

Sample mean proportional
to distances squared.

(Now hit chosen target k=4.)



K-Means++

Start k-means: assign objects 
to the closest mean.



K-Means++

Update the mean 
of each cluster.



K-Means++

In this case: just 2 iterations!

Update the mean 
of each cluster.



Shape of K-Means Clusters

• K-means clusters are formed by the intersection of half-spaces.

Half-space
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• K-means clusters are formed by the intersection of half-spaces.

Half-space

Intersection

Half-space



Shape of K-Means Clusters



Shape of K-Means Clusters

“Closer to red” half-space

“Closer to green” half-space



Shape of K-Means Clusters



Shape of K-Means Clusters

“Red over green” half-space

“Green over red” half-space



Shape of K-Means Clusters

Blue over green half-space

Green over blue half-space



Shape of K-Means Clusters

Magenta over green half-space

Green over magenta half-space



Shape of K-Means Clusters



Shape of K-Means Clusters

• Intersection of half-spaces form a convex set:

– Line between any two points in the set stays in the set.

Convex
Convex

Not Convex



Shape of K-Means Clusters



K-Means with Non-Convex Clusters

https://corelifesciences.com/human-long-non-coding-rna-expression-microarray-service.html



K-Means with Non-Convex Clusters
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K-means cannot separate 
non-convex clusters



K-Means with Non-Convex Clusters

https://corelifesciences.com/human-long-non-coding-rna-expression-microarray-service.html

Though over-clustering can help
(next class)

K-means cannot separate 
non-convex clusters



Application: Elephant Range Map

• Find habitat area of African elephants.

– Useful for assessing/protecting population.

• Build clusters from observations of locations.

• Clusters are non-convex:

– affected by vegetation, mountains,
rivers, water access, etc.

• We don’t want to “partition” data:

– Some points have no cluster.

http://www.defenders.org/elephant/basic-facts



Motivation for Density-Based Clustering

• Density-based clustering:

– Clusters are defined by all the objects in “dense” regions.

– Objects in non-dense regions don’t get clustered.

• It’s a non-parametric clustering method:

– Clusters can become more complicated the more data we have.

– No fixed number of clusters ‘k’.

http://www.defenders.org/elephant/basic-facts



Other Potential Applications

• Where are high crime regions of a city?

• Where should taxis patrol?

• Where does Iguodala make/miss shots?

• Which products are similar to this one?

• Which pictures are in the same place?

• Where can protein ‘dock’?

https://en.wikipedia.org/wiki/Cluster_analysis
https://www.flickr.com/photos/dbarefoot/420194128/
http://letsgowarriors.com/replacing-jarrett-jack/2013/10/04/
http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/



Density-Based Clustering

• Density-based clustering algorithm (DBSCAN) has two parameters:

– Radius: minimum distance between points to be considered ‘close’.

• Objects within this radius are called “reachable”.
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Density-Based Clustering

• Density-based clustering algorithm (DBSCAN) has two parameters:

– Radius: minimum distance between points to be considered ‘close’.

• Objects within this radius are called “reachable”.

– MinPoints: number of reachable points needed to define a cluster.

• If you have minPoints “reachable points”, you are called a “core” point.



Density-Based Clustering



Density-Based Clustering



Density-Based Clustering



Density-Based Clustering



Density-Based Clustering in Action

Interactive demo:
https://www.naftaliharris.com/blog/visualizing-dbscan-clustering

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering


Density-Based Clustering

• Each “core” point defines a cluster:

– Consisting of “core” point and all its “reachable” points.

• Merge clusters if “core” points are “reachable” from each other.
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Density-Based Clustering

• Each “core” point defines a cluster:

– Consisting of “core” point and all its “reachable” points.

• Merge clusters if “core” points are “reachable” from each other.



• Pseudocode for DBSCAN:

– For each example xi:

• If xi is already assigned to a cluster, do nothing.

• Test whether xi is a ‘core’ point (less than minPoints neighbours with distances ≤ ‘r’).
– If xi is not core point, do nothing.

– If xi is a core point, “expand” cluster.

– “Expand” cluster function:

• Assign all xj within distance ‘r’ of core point xi to cluster.

• For each newly-assigned neighbour xj that is a core point, “expand” cluster.

Density-Based Clustering



Density-Based Clustering Issues

• Some points are not assigned to a cluster.

– Good or bad, depending on the application.

• Ambiguity of “non-core” (boundary) points:      

• Sensitive to the choice of radius and minPoints.

– Otherwise, not sensitive to initialization (except for boundaries).

• If you get a new example, finding cluster is expensive.

– Need to compute distances to training points.

• In high-dimensions, need a lot of points to ‘fill’ the space.



Summary

• Norms:
– Ways to measure “size” in higher dimensions.

• K-means++: 
– Randomized initialization of k-means with good expected performance.

• Shape of K-means clusters: 
– Intersection of half-spaces, which forms convex sets.

• Density-based clustering: 
– “Expand” and “merge” dense regions of points to find clusters.

– Useful for finding non-convex connected clusters.

• Next time:
• Discovering the tree of life.



Bonus Slide: Lp-norms

• The L1-, L2-, and L∞-norms are special cases of Lp-norms:

• This gives a norm for any (real-valued) p ≥ 1.

– The L∞-norm is limit as ‘p’ goes to ∞.

• For p < 1, not a norm because triangle inequality not satisfied.



Bonus Slide: Squared/Euclidean-Norm Notation



Bonus Slide: Uniform Sampling

• Standard approach to generating a random number from {1,2,…,n}:

1. Generate a uniform random number ‘u’ in the interval [0,1].

2. Return the largest index ‘i’ such that u ≤ i/n.

• Conceptually, this divides interval [0,1] into ‘n’ equal-size pieces:

• This assumes pi = 1/n for all ‘i’.



Bonus Slide: Non-Uniform Sampling

• Standard approach to generating a random number for general pi. 

1. Generate a uniform random number ‘u’ in the interval [0,1].

2. Return the largest index ‘i’ such that u ≤ 

• Conceptually, this divides interval [0,1] into non-equal-size pieces:

• Can sample from a generic discrete probability distribution in O(n).

• If you need to generate ‘m’ samples:

– Cost is O(n + m log (n)) with binary search and storing cumulative sums.



Bonus Slide: Discussion of K-Means++

• Recall the objective function k-means tries to minimize:

• The initialization of ‘W’ and ‘c’ given by k-means++ satisfies:

• Get good clustering with high probability by re-running.

• However, there is no guarantee that c* is a good clustering.


