CPSC 340:
Machine Learning and Data Mining

K-Means Clustering
Fall 2016



Admin

e Assignment 1 is due now!
— 1 late day to hand it in before Monday’s class.
— 2 late days to hand it in before Wednesday’s class.
— 3 late days to hand it in before Friday of next week’s class.
— 0 after that.

* Assignment 2 coming next week.



Random Forests

e Random forests are one of the best ‘out of the box’ classifiers.

* Fit deep decision trees to random bootstrap samples of data, base
splits on random subsets of the features, and classify using mode.
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Random Forests

e Random forests are one of the best ‘out of the box’ classifiers.

* Fit deep decision trees to random bootstrap samples of data, base
splits on random subsets of the features, and classify using mode.
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End of Part 1: Key Concepts

 Fundamental ideas:
— Training vs. test error.
— Golden rule of ML.
— Fundamental trade-off.
— Validation sets and cross-validation.
— Parametric vs. non-parametric.
— No free lunch theorem.
— Ensemble methods.

* Methods that we focused on:
— Decision trees (greedy recursive splitting using decision stumps).
— Naive Bayes (generative classifier based on conditional independence).
— K-nearest neighbours (non-parametric classifier with universal consistency).
— Random forests (averaging plus randomization to reduce overfitting).



Application: Classifying Cancer Types

* “| collected gene expression data for 1000 different types of cancer
cells, can you tell me the different classes of cancer?”

* We are not given the class labels y, but want meaningful labels.
* An example of unsupervised learning.



Unsupervised Learning

e Supervised learning:
— We have features x; and class labels ..
— Write a program that produces y; from x..

 Unsupervised learning:
— We only have x; values, but no explicit target labels.
— You want to do ‘something’ with them.

 Some unsupervised learning tasks:
— Outlier detection: Is this a ‘normal’ x,?
— Data visualization: What does the high-dimensional X look like?
— Association rules: Which x;; occur together?
— Latent-factors: What ‘parts’ are the x, made from?
— Ranking: Which are the most important x;?
— Clustering: What types of x. are there?



Clustering

e Clustering:
— Input: set of objects described by features x..
— Output: an assignment of objects to ‘groups’.

* Unlike classification, we are not given the ‘groups’.
— Algorithm must discover groups.

* Example of groups we might discover in e-mail spam:
— ‘Lucky winner’ group.
— ‘Weight loss’ group.
— ‘Nigerian prince’ group.



Clustering Example
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Clustering Example
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Data Clustering

e General goal of clustering algorithms:
— Objects in the same group should be ‘similar’.
— Objects in different groups should be ‘different’.

e But the ‘best’ clustering is hard to define:
— We don’t have a test error.

— Generally, there is no ‘best’ method in unsupervised learning.
* Means there are lots of methods: we’ll focus on important/representative ones.

 Why cluster?
— You could want to know what the groups are.
— You could want a ‘prototype’ example for each group.
— You could want to find the group for a new example x.
— You could want to find objects related to a new example x.



Clustering of Epstein-Barr Virus

Expression
Profile
GROUP B-P-L  # Genes Genes of Interest

1 / 48  COND2, CDC25C, CDKS,
E2F7, OAS3, XRCC4

AURKA/B, BRCA2, BUB1,
CCNA2, CCNB1/2, CCNET,
CD38, CDC2, CDC25A,
2 / 232 cDC45L, CENPA, DNMT1,
FEN1, HIST1H3A, IFI44L,
IFIT1, IFITM1, MKI67, NEIL3,
PLK1, RFC3, TOP2A

ASPM, BLMH, BRCAH1,
CCNEZ2, CDC8, CENP (F/K),
CLSPN, E2F2, EXO1,
11 FANCA, KIF2C, MCM
(2,3,4,7,10), MYB, ORCIL,
POLE2, POLQ, SMC (2/4)

35 FOS, EGR1

ACTN1, AICDA, ATF3,
BCL2L10, EBI3, ICAMA,
144  IL10, MSC(ABF1), OPTN,
PLA1A, PLD1, RHOC,
TRAF1, VCAM1

BACH1, BCL6, BCOR,
146 CASP8, CXCR4, EBF1,
ELK3, IL6, JUND, SPIB

BCL11A, CIITA, FCRL1/2,
106 FOXP1, FYN, JAK1,
SWAP70

~
)

25 BACH2, BANK1, FCRLS3,
NFATC2, NOTCH2, TGFBR2

33 BCL2, CCR7,CD80, CFLAR,
NFKB2, STAT3, TNIP1
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Other Clustering Applications

NASA: what types of stars are there?
Biology: are there sub-species?

Documents: what kinds of documents are on my HD?

Commercial: what kinds of customers do | have?

Pointer
Irish Setter
German Shorthaired Pointer
Welsh Springer Spaniel
English Cocker Spaniel
American Cocker Spaniel
American Water Spaniel
Cavalier King Charles Spaniel
Chesapeake Bay Retriever
Golden Retriever
Portuguese Water Dog
Miniature Schnauzer
Standard Schnauzer
Giant Schnauzer
American Hairless Terrier
West Highland White Terrier
Cairn Terrier
Australian Terrier
Airedale Terrier

Doberman Pinscher
Italian Greyhound
Ibizan Houndr
Pharach Hound
Old English Sheepdog
Border Collie
Schipperke
Beagle
Basset Hound
Bloodhound
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Clumber Spaniel
Australian Shepherd
Rhodesian Ridgeback
Irish Terrier
Bedlington Terrier
Kerry Blue Terrier
Soft Coated Wheaten Terrier
Flat-Coated Retriever
Labrador Retriever
Chihuahua

Fr

,,/-@‘ Pomeranian
Dachshund

9
Bichon Frise

Standard Poodle

Whippet

Manchester Terrier

Keeshond
rwegian Elkhound
Komondor
Kuvasz
Great Dane

Tibetan Terrier
Afghan Hound
Saluki

Presa Canario

Newfoundland
German Shepherd Dog

Miniature Bull Terrier

Rottweiler
Bullmastiff

ench Bulldog

®
Bulldog

Boxer foa
Mastiff y

Saint Bernard
Bernese Mountain Dog
Greater Swiss Mountain

Irish Wolfhound
Greyhound
Borzoi
Belgain Sheepdog
Belgian Tervuren
Collie
Shetland Sheepdog

Samoyed
Lhasa Apso
Pekingese

Shih Tzu

Akita <A
Shiba Inu ¢~
Chow Chow
Chinese Shar-Pei
Alaskan Malamute
Siberian Husky
Basenji




K-Means

* Most popular clustering method is k-means.
* |nput:

— The number of clusters ‘K.

— Initial guesses of the center (“mean”) of each cluster.
* Algorithm:

— Assign each x; to its closest mean.

— Update the means based on the assignment.
— Repeat until convergence.
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K-Means Example

Start with ‘k’ initial ‘means’
(usually, random data points)
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K-Means Example
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Assign each object to
the closest mean.
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K-Means Example

Update the mean
of each group.
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K-Means Example

Assign each object to
the closest mean.
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K-Means Example

Update the mean
of each group.
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K-Means Example
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Assign each object to
the closest mean.
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K-Means Example
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K-Means Example
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K-Means Example

Update the mean
of each group.
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Stop if no objects
change groups.



K-Means Issues

Guaranteed to converge when using Euclidean distance.
New object are assigned to nearest mean to cluster them.

Assumes you know number of clusters k.

— Lots of heuristics to pick ‘k’, none satisfying:
* https://en.wikipedia.org/wiki/Determining_the number_of clusters_in_a data_set

Each object is assigned to one (and only one) cluster:
— No possibility for overlapping clusters or leaving objects unassigned.

It may converge to sub-optimal solution...



K-Means Clustering with Different Initialization
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* Classic approach to dealing with sensitivity to initialization:
— Try several different random starting points, choose the ‘best’.

 We'll see a more clever approach next time...



Cost of K-means

e Bottleneck is calculating distance from each X; to each mean w_:
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Cost of K-means

Bottleneck is calculating distance from each x; to each mean w_:
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Each time we do this costs O(d) to go through all features. ARA

For each of the ‘n’ objects, we compute the distance to ‘k’ clusters.

Total cost of assigning objects to clusters is O(ndk).

— Fast if k is not too large.
Updating means is cheaper: O(nd). Dyect in claster
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Vector Quantization

 K-means originally comes from signal processing.

* Designed for vector quantization:
— Replace ‘vectors’ (objects) with a set of ‘prototypes’ (means).

. Places s
Cities 30 Recent 95 Visited 44

Vancouver, British Columbia Paris, France Edmonton, Alberta Montreal, Quebec Taupo, New Zealand More~

 Example:

— Facebook places. o o 9
— What sizes of clothing should | make? 0@ 0@ = g% o
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Q
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Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = K.
— Can apply k-means to find set of prototype colours. Aversge red green

Original: K-Means Quantized: and Lll’ed‘;“/_;“‘ Ih
(24-bits/pixel) (6-bits/pixel) sTer |,
V'\ w= \

2
_ |3
: 2 each pixel j
| L 1
l A~/
ZBJ 3 (Yeolows
L]
\/;‘J | C.J/),;‘f pumber Jets ws have QL ¢ s Fers,




Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = K.
— Can apply k-means to find set of prototype colours. Average redyyreen,
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Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = K.

— Can apply k-means to find set of prototype colours. Avmye red green
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Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = K.
— Can apply k-means to find set of prototype colours. Aversge red green
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What is K-Means Doing?

 We can interpret K-Means as trying to minimize an objective:

— Total sum of squared distances from object X; to their centers w;:

‘F(W,)Wz)"’) \4/,\,)6('))((2) c(n)> = Z Z (X — W()>

)= J—
* The k-means steps: é—v(lmer of @)(ooWl/o/

— Optimally update cluster assignments c(i).
— Optimally update means w..
* Convergence follows because:

— Each step does not increase the objective.
— There are a finite number of assignments to k clusters.



K-Medians Clustering

With other distances, k-means may not converge.
However, changing objective function gives convergent algorithmes.
E.g., we can use the L1-norm: ~ d

EZIXU— Wc(;)_,'l

121 d= I
A ‘k-medians’ algorithm based on the L1-norm:
— Cluster assignment based on the L1-norm (nearest median).
— Update ‘medians’ as median value (dimension-wise) of each cluster.

This approach is more robust to outliers.
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Summary

Unsupervised learning: fitting data without explicit labels.
Clustering: finding ‘groups’ of related objects.

K-means: simple iterative clustering strategy.

Vector quantization: replacing measurements with ‘prototypes’.
K-medians: generalization to other distance functions.

Next time:

— Non-parametric clustering.



