CPSC 340:
Machine Learning and Data Mining

Non-Parametric Models
Fall 2016



Admin

* Course add/drop deadline tomorrow.

* Assignment 1 is due Friday.
— Setup your CS undergrad account ASAP to use Handin:

e https://www.cs.ubc.ca/getacct

— Instructions for handin posted to Piazza.
— Start the assignment ASAP, if you haven’t already.

* The material will be getting much harder and the workload much higher.


https://www.cs.ubc.ca/getacct

Application: E-mail Spam Filtering

 Want a build a system that filters spam e-mails:

 We formulated as supervised learning:
— (y, = 1) if e-mail V" is spam, (y, = 0) if e-mail is not spam.

— (xij = 1) if word/phrase ‘j’ is in e-mail ‘i’, (xij = 0) if it is not.
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Generative Models

* We considered spam filtering methods based on generative models:

P( \/) — ‘ISPam“ | x;> — r()(/ , \/i - ,'Sf’""'\>/>(y,‘ — "S/)alh“)
PTx)

e What do these terms mean?
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* We considered spam filtering methods based on generative models:

P( \/'/: ‘If‘mm“ | x;) = f’(x/ ,\/' = "Sfmm'\>/)(yl, - "S/oam")
PLxi)
* p(x,) is probability that a random e-mail has features x..
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Generative Models

* We considered spam filtering methods based on generative models:
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* p(x;) is probability that a random e-mail has features x.
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Generative Models

* We considered spam filtering methods based on generative models:
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Hard, but not needed to classify using:
, p(y,— spam’ | x)) > p(y, = ‘not spam’ | x)




Generative Models

* We considered spam filtering methods based on generative models:

F( \/) — ‘|§Pam“ | X,‘> = f)()(l ,\/' - ”Sf”"‘">l)(y,‘ — "S}oam“)
P

* p(y, = ‘spam’) is probability that a random e-mail is spam.

NOT ply, === e
SPAM

SPAM

* Hard to compute exactly.
* But is easy to approximate from data:
e Count (#spam in data)/(#messages)




Generative Models

* We considered spam filtering methods based on generative models:

F( \/) — "SPO\MH | X,‘> = r()(l ,\/' = ”Sfam">/)(y'. = "S/)am")
PLxi)
* p(x | y;=‘spam’) is probability that spam has features x.
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Generative Models

* We considered spam filtering methods based on generative models:

F( \/) — "SPOW\“ | X,‘> = r()(l ,\/' = ”S‘oam">/)(y'. = llS])aM")
PLxi)
* p(x | y;=‘spam’) is probability that spam has features x.

F(‘x ly'—: _sqm =
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* VVery hard to estimate:
* Too many possible x..



Nalve Bayes

 How the naive Bayes model deals with the hard terms:
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* Now only need easy quantities like p(‘vicodin’ = 1| y. = ‘spam’).



Naive Bayes Models

* p(vicodin =1 | spam = 1) is probability of seeing ‘vicodin’ in spam.

VICOdIn F(V'a(oolfvn:’ )5,7aw\: /73 # >pam Mtffaf)a w/ viced n

NOT Fope m
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* Easy to estimate:
e #(spam w/ Vicodin)/#spam
* “Maximum likelihood estimate”




Nalve Bayes

* Naive Bayes more formally:

F(y,/ X)) = (;(xily,?(,(y,.)
F(X;)

o8 F(Xr‘ ‘y,? r()ﬁ)

~ ;le’ l:r(x,-\j '%-7],')()/,')

— Assumption: all x; are conditionally independent give y..



Independence of Random Variables

* Events A and B are independent if p(A,B) = p(A)p(B).
— Equivalently: p(A|B) = p(A).
— “Knowing B happened tells you nothing about A”.

ALDL

 Random variables are independent if p(x,y) = p(x)p(y) for all x and .

— We use the notation:

— Flipping two coins:
p(C, = ‘heads’, C, = ‘heads’) = p(C,; = ‘heads’)p(C, = ‘heads’).
p(C, = ‘tails’, C, = ‘heads’) = p(C, = ‘tails’)p(C, = ‘heads’).



Conditional Independence

* A and B are conditionally independent given C if
p(A, B | C)=p(A | C)p(B | C).
— Equivalently: p(A | B, C) = p(A | C).
— “Knowing C happened, also knowing B happened says nothing about A”.
— Example: p(Pizza | D,, Survive) = p(Pizza | Survive).
— Knowing you survived, dice 1 gives no information about chance of pizza.

— We use the notation: /~\ __L @ , (,

* Semantics of p(A, B | C, D):
— “probability of A and B happening, if we know that C and D happened”.



Nalve Bayes

* |n naive Bayes: assume features are independent given label.
— “Once you know it’s spam, there is no dependency between features.

n

— Not true, but sometimes a good approximation.
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Nalve Bayes

* |n naive Bayes: assume features are independent given label.
— “Once you know it’s spam, there is no dependency between features.”
— Not true, but sometimes a good approximation.
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Decision Trees vs. Nalve Bayes

* Decision trees: @f:k 705)

Sequence of rules based on 1 feature.

Training: 1 pass over data per depth.
Hard to find optimal tree.
Testing: just look at features in rules.

New data: might need to change tree.

Accuracy: good if simple rules work.

* Nalve Bayes:

()(sic’( | wilk, €99, loctase )
/A‘{ P(ma/ ¥ l;id{)')(ccﬂ | sick) )o(/ac‘}asc [sick)f{ﬂ‘")
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Simultaneously combine all features.
Training: 1 pass over data to count.
Easy to find optimal probabilities.
Testing: look at all features.

New data: just update counts.

Accuracy: good if features almost
independent given label.



Nailve Bayes Issues

1. Do we need to store the full bag of words 0/1 variables?

— No: only need list of non-zero features for each e-mail.

Could use a sparse matrix representation.

2. Problem with maximum likelihood estimate (MLE):
— MLE of p(‘lactase’ = 1| ‘spam’) is (#spam messages with ‘lactase’)/#tspam.
— If you have no spam messages with lactase:

* p(‘lactase’ | ‘spam’) = 0, and message automatically gets through filter.

— Fix: imagine we saw/not-saw each word in spam/not-spam messages:
* “Laplace smoothing” for binary features: replace n/n.with (ng + 1)/(n + 2).
* A generalization is (ncjk + B)/(nc + 2B) for some constant “B”.

* If X; can take ‘m’ values, you would (ncjk + B)/(nc + mp).



Nailve Bayes Issues

3. During the prediction, the probability can underflow:

‘Q(Y/C/IX>D( —T[F(X,)ly—cﬂ 7/ c)

\—/\/—_’J
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* Standard fix is to (equivalently) maximize the logarithm of the probability:
Logarithm turns multiplication of small numbers into addition of small numbers.
 Logarithm is monotonic, so it doesn’t change location of the maximum.

4. Are we equally concerned about spam vs. not spam?



Decision Theory

* True positives, false positives, false negatives, false negatives:

Predict / True
Predict ‘spam’ True Positive False Positive
Predict ‘not spam’ False Negative True Negative

* The costs mistakes might be different:

— Letting a spam message through (false negative) is not a big deal.
— Filtering a not spam (false positive) message will make users mad.



Decision Theory

* We can give a cost to each scenario, such as:

Predict / True
Predict ‘spam’ 0 100

* Instead of assighing to most likely classify, minimize expected cost:

E[ C ( ;’i = So;@ﬁ?} — F(y| = Sfam\xl-)c (;\i/\fgr)aw’b Yi: Sfotm)
"" P(Y' 7}'\0‘]‘ gfaw\ 'X-,) C (,y, - Sf"”") )", :{\61_ I/um>
p_v =
* Evenif p(spam |x.) > p(not spam | x.), cost of predicting spam

— Might still classify as “not spam”, when e=mail is pot spam
if E[C(yhat, = spam)] > E[C(yhat, = not spam)].




Decision Theory and Darts

Post on decision theory in “darts”:
— http://www.datagenetics.com/blog/january12012/index.html

f you are very accurate, obviously aim for the high-scoring regions.
f you are very inaccurate, obviously aim for the middle.

Decision theory gives you the best strategy for other accuracies.


http://www.datagenetics.com/blog/january12012/index.html

Parametric vs. Non-Parametric

* Decision trees and naive Bayes are often not very accurate.
— Greedy rules or conditional independence might be bad assumptions.
— They are also parametric models.



Parametric vs. Non-Parametric

e Parametric models:

|H

— Have a fixed number of parameters: size of “model” is O(1) in terms ‘n’.

* E.g., decision tree just stores rules.
* E.g., naive Bayes just stores counts.

— You can estimate the fixed parameters more accurately with more data.
— But eventually more data doesn’t help: model is too simple.

* Non-parametric models:
— Number of parameters grows with ‘n’: size of “model” depends on ‘n’.

— Model gets more complicated as you get more data.
— E.g., decision tree whose depth grows with the number of examples.



K-Nearest Neighbours (KNN)

* Classical non-parametric classifier is k-nearest neighbours (KNN).

 KNN algorithm for classifying an object x’:

1. Find ‘k’ training examples x. that are most “similar” to x.

2. Classify using the mode of theiry..
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K-Nearest Neighbours (KNN)

* Classical non-parametric classifier is k-nearest neighbours (KNN).
 KNN algorithm for classifying an object x’

1.
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2. Classify usmg the mode of theiry..
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K-Nearest Neighbours (KNN)

* Classical non-parametric classifier is k-nearest neighbours (KNN).
 KNN algorithm for classifying an object x’

1.

Find ‘k’ training examples x. that are most “similar” to x.
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* Classical non-parametric classifier is k-nearest neighbours (KNN).
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K-Nearest Neighbours (KNN)

* Assumption:

— Objects with similar features likely have similar labels.

* There is no training phase (“lazy” learning).
— You just store the training data.
— Non-parametric because the size of the model is O(nd).

e But predictions are expensive: O(nd) to classify 1 test object.
— Tons of work on reducing this cost (we’ll discuss these later).



How to Define ‘Nearest’?

* There are many ways to define similarity between x; and x..

e Most common is Euclidean distance: D( R 2
)(,)XQ> —'\] g (X/J' — X2J>

)=
e Other possibilities: d
— L, distance: D({,) "17 = sz‘ (X’J ~x, l
— Jaccard similarity (binary): D(X,)Xz>: X, (Vg —> # times byt are /1’

x, U x3 —=3 H limes eithec is 7|
— Cosine similarity.
— Distance after dimensionality reduction (later in course).
— Metric learning (learn the best distance function).



Consistency of KNN

With a small dataset, KNN model will be very simple.

With more data, model gets more complicated:
— Starts to detect subtle differences between examples.

With a fixed ‘K, it has appealing consistency properties:

— With binary labels and under mild assumptions:
* As ‘n’ goes to infinity, KNN test error is less than twice irreducible error.

Stone’s Theorem:

— If k/n goes to zero and ‘k’ goes to infinity:
* KNN is ‘universally consistent’: test error converges to the irreducible error.
* First algorithm shown to have this property.

Does Stone’s Theorem violate the no free lunch theorem?
— No, requires assumptions on data and says nothing about finite training sets.



Summary

1. Naive Bayes:
 Conditional independence assumptions to make estimation practical.

2. Decision theory allows us to consider costs of predictions.
3. Non-parametric models grow with number of training examples.

4. K-Nearest Neighbours:
 Asimple non-parametric classifier.
 Appealing consistency properties.

* Next Time:
— Learning behind Microsoft Kinect.



Bonus Slide: Other Performance Measures

e Classification error might be wrong measure:
— Use weighted classification error if have different costs.
— Might want to use things like Jaccard measure: TP/(TP + FP + FN).

e Often, we report precision and recall (want both to be high):

— Precision: “if | classify as spam, what is the probability it actually is spam?”
* Precision = TP/(TP + FP).
* High precision means the filtered messages are likely to really be spam.
— Recall: “if a message is spam, what is probability it is classified as spam?”
e Recall =TP/(TP + FN)
* High recall means that most spam messages are filtered.



Bonus Slide: Precision-Recall Curve

* Consider the rule p(y, = ‘spam’ | x;) > t, for threshold ‘t’.
* Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.
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Bonus Slide: ROC Curve

e Receiver operating characteristic (ROC) curve:

— Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).
(negative examples classified as positive)

True Positiwve Rate

Rlgorithm 1 ——
Algorithm 2 ===

0 0.2 0.4 0.6 0.8 1

False Positive Rate

— Diagonal is random, perfect classifier would be in upper left.
— Sometimes papers report area under curve (AUC).



Bonus Slide: Avoiding Underflow

* During the prediction, the probability can underflow:
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L~
N 0 Ahee we < 5o The

P/gdmcf 31:*5 \/CrZ S e '/
* Standard fix is to (equivalently) maximize the logarithm of the probability:
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Bonus Slide: p(x;) under naive Bayes

* Generative models don’t need p(x;) to make decisions.
* However, it’s easy to calculate under the naive Bayes assumption:

G)(Xi) - F(}(,)/ L? (/Marqul;gq?‘lon /‘u/¢>

Z P<Xl l)/ c) (y (,) ([ch)dmcf rm/¢>

i E ” r;()() I/ C)] /y C) (y\a\»e g”)/f’f aﬁ’“”\,ﬂf“‘)

h/*/

”«Se Gre ﬂ\e ‘,uwh‘/ws
weé (aw\rufe Ju/ln9 Trainm9.



Bonus Slide: Less-Naive Bayes

* Given features {x1,x2,x3,...,xd}, naive Bayes approximates p(y|x) as:
ply Lriyny ) o ply 2 p Capigyoyxly) oy produc vule applind vepeatelly

— r (y) 4 (X‘ '\/>r()(2 I)(,)y>f()(} I)(Z)XI )\/) - ID(XJ IX[7)(]) )XJ—-/)Y)
/\/6 'o(\/> f()(, "/) ’0(/2 ’y>r()/5 Iy) ,a(XO/ ,y> (ha5v€ ﬂfﬂy«d ﬂs)ww'ﬂ'}d")
 The assumption is very strong, and there are “less naive” versions:
— Assume independence of all variables except up to ‘k’ largest j” where j < i.

* E.g., naive Bayes has k=0 and with k=2 we would have:

~ ‘)[y) ()(X, "/) r(XJ ’X,7y)r()(3 'X) 7)(, 7)’)/3(&; ,)(;)X2>y> - - /) ()/J /Xl.z) XJ_/))/)
* Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.

— Another practical variation is “tree-augmented” naive Bayes.



Bonus Slide: Computing all distances in Matlab

Note: Matlab can be slow at executing operations in ‘for’ loops, but allows extremely-fast hardware-
dependent vector and matrix operations. By taking advantage of SIMD registers and multiple cores (and
faster matrix-multiplication algorithms), vector and matrix operations in Matlab will often be several times
faster than if you implemented them yourself in a fast language like C. If you find that calculating the Eu-
clidean distances between all pairs of points takes too long, the following code will form a matrix containing
the squared Euclidean distances between all training and test points:

[n,d] = size(X);
[t,d] = size(Xtest);
D = X. 2%ones(d,t) + ones(n,d)*(Xtest’). 2 - 2*XxXtest’;

Element D(z,j) gives the squared Euclidean distance between training point ¢ and testing point j.



Bonus Slide: Computing all distances in Matlab

Note: Matlab can be slow at executing operations in ‘for’ loops, but allows extremely-fast hardware-
dependent vector and matrix operations. By taking advantage of SIMD registers and multiple cores (and
faster matrix-multiplication algorithms), vector and matrix operations in Matlab will often be several times
faster than if you implemented them yourself in a fast language like C. If you find that calculating the Eu-
clidean distances between all pairs of points takes too long, the following code will form a matrix containing

the squared Euclidean distances between all training and test pointe
The trick to figuring out what matrix multiplication operations like this do is usually to figure what an individual element of the result looks ure vy
[Il d] = size (X) . writing it as an inner product or writing it in summation notation (as you'll do in the tutorials this week).
2 ]
[t s d.] = gize (Xtest) N In this case we have that:

D = X. 2%ones(d,t) + ones(n,d)*(Xtest’)."2 - 2*xX*Xtest’; - Eloment (i, ) of "X 2" s given by X2,

Element D(i, j) gives the squared Euclidean distance between train L o P ) o ,
’ - Element (i, 7) of "X.*2%ones(d,t)" is given by 3 Xﬂj + 1 = ||| where ; is training example 1.

j=1 Y4
- By the same logic, element (%, 7) of "ones(n,d)*(Xtest')."2" gives ||i';,||g where Z; is test example j.
- Finally, element (i, ) of "2"X*Xtest" gives 2z7 Z;.

Putting everything together, each element (i,j] of the result gives

ll:ll3 — 22F'2; + [|2113-

Let's re-write this as

elz; — 2o8a; 4+ i?ij,

and if you now "complete the square” you get
(@i — ;)" (2: — 25),

which is equal to ||z; — &;|[2.

(You could take the square root if you want the Euclidean distance, but since that won't change the ordering of neighbours it isn't necessary.)



