CPSC 340:
Machine Learning and Data Mining

Generative Models
Fall 2016

Admin

e Assignment 1 is out, due September 23",

— Setup your CS undergrad account ASAP to use Handin:

 https://www.cs.ubc.ca/getacct
* Instructions for handin will be posted to Piazza.

— Try to do the assignment this week, BEFORE add/drop deadline.

* The material will be getting much harder and the workload much higher.
* I'll give alternatives to p-files for Octave after class.

— Tutorial slides posted.
* Registration:
— Keep checking your registration, if could change quickly.
— You need to be registered in a tutorial section to stay enrolled.

https://www.cs.ubc.ca/getacct

Should you trust them?

* Scenario 1:
— “I built a model based on the data you gave me.”
— “It classified your data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably not:
— They are reporting training error.
— This might have nothing to do with test error.
— E.g., they could have fit a very deep decision tree.
* Why ‘probably’?
— If they only tried a few very simple models, the 98% might be reliable.
— E.g., they only considered decision stumps with simple 1-variable rules.

Should you trust them?

e Scenario 2:

— “I built a model based on half of the data you gave me.”
— “It classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the validation error once.
— This is an unbiased approximation of the test error.
— Trust them if you believe they didn’t violate the golden rule.

Should you trust them?

* Scenario 3:
— “I' built 10 models based on half of the data you gave me.”
— “One of them classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the validation error a small number of times.
— Maximizing over these errors is a biased approximation of test error.
— But they only maximized it over 10 models, so bias is probably small.
— They probably know about the golden rule.

Should you trust them?

* Scenario 4.
— “I' built 1 billion models based on half of the data you gave me.”
— “One of them classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably not:
— They computed the validation error a huge number of times.
— Maximizing over these errors is a biased approximation of test error.
— They tried so many models, one of them is likely to work by chance.
* Why ‘probably’?
— If the 1 billion models were all extremely-simple, 98% might be reliable.

Should you trust them?

* Scenario 5:
— “I built 1 billion models based on the first third of the data you gave me.”
— “One of them classified the second third of the data with 98% accuracy.”
— “It also classified the last third of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the first validation error a huge number of times.
— But they had a second validation set that they only looked at once.
— The second validation set gives unbiased test error approximation.
— This is ideal, as long as they didn’t violate golden rule on second set.
— And assuming you are using |ID data in the first place.

The ‘Best” Machine Learning Model

Decision trees are not always most accurate.
What is the ‘best” machine learning model?

First we need to define generalization error:
— Test error on new examples (excludes test examples seen during training).

No free lunch theorem:

— There is no ‘best’ model achieving the best generalization error for every
problem.

— If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.

This question is like asking which is ‘best’ among “rock”, “paper”,
and “scissors”.

The ‘Best’” Machine Learning Model

Implications of the lack of a ‘best” model:
— We need to learn about and try out multiple models.

So which ones to study in CPSC 3407?

— We'll usually motivate a method by a specific application.
— But we’ll focus on models that are effective in many applications.

Caveat of no free lunch (NFL) theorem:

— The world is very structured.

— Some datasets are more likely than others.

— Model A really could be better than model B on every real dataset in practice.
Machine learning research:

— Large focus on models that are useful across many applications.

Application: E-mail Spam Filtering

 Want a build a system that filters spam e-mails.

o Gary <jaiwasie@mail.com>

to schmidt [«

| » Jannie Keenan valberta You are owed $24,718.11 1 Be careful with this message. Similar messages were used to steal people’s

personal information.

» Abby valberta USB Drives with your Logo Hey.

Do you have a minute today?
Rosemarie PEIQE Re: New request created with I1D: ##62 Are you interested to use our email marketing and lead generation
solutions?
We have worked on a number of projects and campaigns in many industries

Shawna Bulger RE: New request created with 1D: ##63 since 2007
Please reply today so we can go over options for you.
¥ GEF‘;,-’ ualberta I:I:II:IpEFEtiI:Iﬂ Iszﬁcseu;e we can help to grow your business soon by using our mailing

Best regards.
Gary
Contact: abelfong@sina.com

* We have a big collection of e-mails, labeled by users.
* Can we formulate as supervised learning?

First a bit more supervised learning notation

 We have been using the notation ‘X’ and ‘y’ for supervised learning:

* Xis matrix of all features, y is vector of all labels.

* Need a way to refer to the features and label of specific object ‘V’.
— We use y, for the label of object ‘i’ (element ‘i’ of ‘y’).
— We use x, for the features object ‘i’ (row ‘i’ of X’).
— We use x; for feature j’ of object ‘"

Feature Representation for Spam

* How do we make label y." of an individual e-mail?
— (y; = 1) means ‘spam’, (y, = 0) means ‘not spam’.
* How do we construct features ‘x” for an e-mail?
— Use bag of words:
¢ ”hE”O”, ”vicodin”, ”S”.
e “vicodin” feature is 1 if “vicodin” is in the message, and 0 otherwise.

— Could add phrases:

/(]

* “be your own boss”, “you’re a winner”, “CPSC 340”.

— Could add regular expressions:

e <recipient>, <sender domain == “mail.com”>

Probabilistic Classifiers

* For years, best spam filtering methods used naive Bayes.
— Naive Bayes is a probabilistic classifier based on Bayes rule.
— It’s “naive” because it makes a strong conditional independence assumption.
— But it tends to work well with bag of words.

* Probabilistic classifiers model the conditional probability, p(y; | x.).
— “If a message has words x,, what is probability that message is spam?”

 If p(y;=‘spam’ | x.) > p(y; = ‘not spam’ | x.), classify as spam.

Digression to Review Probabilities...

Dy

Digression to Review Probabilities...

* Dungeons & Dragons scenario:
— You roll dice 1:

* Roll 5 or 6 you sneak past monster.
* Otherwise, you are eaten.
— |f you survive, you roll dice 2:
* Roll 4-6, find pizza.
* Otherwise, you find nothing.

Digression to Review Probabilities...

* Dungeons & Dragons scenario:
— You roll dice 1: * Probabilities defined on ‘event space’:

* Roll 5 or 6 you sneak past monster. nnn“n
1

* Otherwise, you are eaten.

— If you survive, you roll dice 2:
* Roll 4-6, find pizza.
* Otherwise, you find nothing.

Digression to Review Probabilities...

* Dungeons & Dragons scenario:
— You roll dice 1: * Probabilities defined on ‘event space’:

* Roll 5 or 6 you sneak past monster.

* Otherwise, you are eaten.

— If you survive, you roll dice 2: '-SU rVive
* Roll 4-6, find pizza.

* Otherwise, you find nothing.

@

SurvivePizza

Calculating Basic Probabilities

* Probability of event ‘A’ is ratio:
— p(A) = Area(A)/TotalArea.
— “Likelihood” that ‘A’ happens.

* Examples: .
— p(Survive) = 12/36 = 1/3. ~Survive
— p(Pizza) = 6/36 = 1/6.
— p(~Survive) = 1 — p(Survive) = 2/3. Sur Pizza

Calculating Basic Probabilities

* Probability of event ‘A’ is ratio:
— p(A) = Area(A)/TotalArea.
— “Likelihood” that ‘A’ happens. pio2| 1 | 2 | 3 | 4 | 5 | 6
* Examples: L
— p(Survive) =12/36 = 1/3.

— p(Pizza) = 6/36 = 1/6.

— p(~Survive) = 1 — p(Survive) = 2/3.

2
6

— p(D, is even) = 18/36 = 1.

Random Variables and ‘Sum to 1’ Property

Random variable: variable whose value depends on probability.

Example: event (D, = x) depends on random variable D,.

Convention:

— We'll use p(x) to mean p(X = x), when random variable X is obvious.

Sum of probabilities of random variable over entire domain is 1:

— Zx p(x) =1.
—E.g X;p(D, =

i)=1/6+1/6+ ...

=1.

-nnnnn

=1

=

=

D =2
D, =3
D, =4
D, =5
D, =6

=

Joint Probability

* Joint probability: probability that A and B happen, written ‘p(A,B)’.
— Intersection of Area(A) and Area(B).

* Examples: ono2| 1 | 2 | 3 | 4 | 5 | 6
— p(D; = 1, Survive) = 0.
— p(Survive, Pizza) = 6/36 = 1/6.

/IvPl1zza

Joint Probability

* Joint probability: probability that A and B happen, written ‘p(A,B)’.
— Intersection of Area(A) and Area(B).

-nnnlln

* Examples:
— p(D; = 1, Survive) = 0.
— p(Survive, Pizza) = 6/36 = 1/6.
— p(D, even, Pizza) =3/36 = 1/12.

e Note: order of A and B does not matter

Marginalization Rule

 Marginalization rule:
- P(A) =Y,P(4,X = x).

— Summing joint over all values of one variable gives probability of the other.

— Example: P(Pizza) = P(Pizza, Survive) + P(Pizza, -Survive) = %.

~Survive

Surv/ivPizza

— Applying rule twice: Y., >, p(Y =y, X =x) = 1.

Conditional Probability

e Conditional probability:
— probability that A will happen if we know that B happens.
— “probability of A restricted to scenarios where B happens”.
— Written p(A|B), said “probability of A given B”.

* Calculation:

— Within area of B:
* Compute Area(A)/TotalArea.

— p(Pizza | Survive) =

~Survive

Sur/iviPizza

Conditional Probability

e Conditional probability:
— probability that A will happen if we know that B happens.
— “probability of A restricted to scenarios where B happens”.
— Written p(A|B), said “probability of A given B”.

* Calculation:

— Within area of B:
* Compute Area(A)/TotalArea.

Geometrically: compute area of A on new space where B happened.

— p(Pizza | Survive) =
p(Pizza, Survive)/p(Survive) = 6/12 = %.

— Higher than p(Pizza, Survive) = 6/36 = 1/6.
— More generally, p(A | B) = p(A,B)/p(B).

‘Sum to 1’ Properties and Bayes Rule.

Conditional probability P(A | B) sums to one over all A:
- YxP(x|B) =1.

— P(Pizza | Survive) + P(~ Pizza | Survive) =

— P(Pizza | Survive) + P(Pizza | ~Survive) # 1.

Product rule: p(A,B) = p(A | B)p(B).

Bayes Rule: F(A 1B) = F(B) A)v) (A
&)

— Allows you to “reverse” the conditional probability.
Example:
— P(Pizza | Survive) = P(SurV|ve | Pizza)P(Pizza)/P(Survive)

= (1) * (1/6) / (1/3)="x
— http://setosa.io/ev/conditional-probability

http://setosa.io/ev/conditional-probability/
http://setosa.io/ev/conditional-probability/
http://setosa.io/ev/conditional-probability/
http://setosa.io/ev/conditional-probability/

Back to E-mail Spam Filtering...

e Recall our spam filtering setup:
— v.: whether or not the e-mail was spam.
— x;: the set of words/phrases/expressions in the e-mail.

* To model conditional probability, naive Bayes uses Bayes rule:

‘)(y, st ‘lf‘mmh | X}> = f)()(, l\/’ = ”5‘0""""\ >/)(y, _ "S/oam")
PLx;)
* Easy part #1: p(y, = ‘spam’) is the probability that an e-mail is spam.

— Count of number of times (y, = ‘spam’) divided by nhumber of objects ‘n’.

— For (complicated) proof of this (simple) fact, see:
e http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

Back to E-mail Spam Filtering...

e Recall our spam filtering setup:
— v.: whether or not the e-mail was spam.
— x;: set of words/phrases/expressions in the e-mail.

* To model conditional probability, naive Bayes uses Bayes rule:

F(Y) — 'lf‘)am“ | X}> = f)()(, ,\/, bt I'S‘Mm'\>/)(yl' — "S/Da/h“)
pixi)

* Easy part #2: We don’t need p(x,).
7(7 'f\’§+ f(y}:";f"“‘. ’),',) we J\AS"‘ need to know if f()' = S'oaw. ')() > P(y'— ‘ot Spam ’X)

By @ayfs rm’f This s €l/M7Vﬂ/*’"f to Jf(x' ’/,: Spem)f(//‘ f/mn \) > f)()(, 'y = no‘/ ;/W.,,)’, n.;’f;ram/
f("'a) P(X)
f857 ')()' I)f\ N sf) avv)P - ff am)> P)(‘l)’, ho*{fah. ‘)F(/ I*Sﬁ.q’

Denom;'\a’é"f arfe n‘f samt So e “g-}

Generative Classifiers

* The hard part is estimating p(x; | y, = ‘spam’):
— the probability of seeing the words/expressions x. if the e-mail is spam.

* Classifiers based on Bayes rule are called generative classifier:
— |t needs to know the probability of the features, given the class.
* How to “generate” features.

— You need a model that knows what spam messages look like.

* And a second that knows what non-spam messages look like.

— This work well with tons of features compared to number of objects.

Generative Classifiers

* But does it need to know language to model p(x; | y;)???

* To fit generative models, usually make BIG assumptions:
— Gaussian discriminant analysis (GDA):

* Assume that p(x; | y,) follows a multivariate normal distribution.

— Naive Bayes (NB):

* Assume that each variables in x; is independent of the others in x; given y..

Summary

No free lunch theorem: there is no “best” ML model.

Joint probability: probability of A and B happening.

Conditional probability: probability of A if we know B happened.
Generative classifiers: build a probability of seeing the features.

Next time:

— A “best” machine learning model as ‘n’ goes to .

