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Machine Learning and Data Mining
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Fall 2016



Admin

* Assignment 6:

— 1 late day to hand in next Monday, 2 for Wednesday, 3 for Friday.
* Final:

— December 12 (8:30am — HEBB 100)

— Covers Assignments 1-6.

— List of topics posted.

— Final from last year will be posted after class.

— Closed-book, cheat sheet: 4-pages each double-sided.



Last Time: Semi-Supervised Learning

* In semi-supervised learning we have:
— Usual labeled examples {X,y}.
— An additional set of unlabeled examples X.

* Exam analogy for types of supervised/semi-supervised learning:

— Regular supervised learning:
* You are given the practice final with answers.
* You want to get the answers right on the real final.

— Inductive SSL:

* You are given the practice final with answers.
* You also have the finals from previous years (but no answers).
* You want to get the answers right on the real final.

— Transdutive SSL:
* You are given the practice final with answers.
* You want to get the answers right on a take-home final.
* You can study while knowing what questions you need to answer.



Last Time: Graph-Based Semi-Supervised Learning

. Graph -based (transductive) SSL uses weighted graph on examples:
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* Find labels minimizing cost penalizing disagreements on edges.

* Similar to KNN, but labels get ‘propagated’ through unlabeled X..
— Can label cluster or manifold.

* Directly works on labeling: only need the graph, not the features.
— Interpretation as random walk in graph or in terms of a Markov chain.



Today: Course Review

The age of “big data” is upon us.
Data mining and machine learning are key tools to analyze big data.

Very similar to statistics, but more emphasis on:
Computation

Test error.

Non-asymptotic performance.
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Models that work across domains.
Enormous and growing number of applications.

The field is growing very fast:
— ~2500 attendees at NIPS 2 years ago, ~5800 next week (Influence of SSS, too).

Today: review of topics we covered, overview of topics we didn’t.



Data Representation and Exploration

* We first talked about feature representation of data:

— Each row in a table corresponds to one ‘object’.
— Each column in that row contains a ‘feature’ of the object.
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Discussed numerical/discrete features, feature transformations.
Discussed summary statistics like mean, quantiles, variance.
Discussed data visualizations like boxplots and scatterplots.
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Supervised Learning and Decision Trees

* Supervised learning builds model to map from features to labels.
— Most successful machine learning method.
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* Decision trees consist of a sequence of single-variables ‘rules’:
— Simple/interpretable but not very accurate. @k 7 05)
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* Greedily learn from by fitting decision stumps and splitting data.




Training, Validation, and Testing

In machine learning we are interesting in the test error.

— Performance on new data.

lID: training and new data drawn independently from same distribution.
Overfitting: worse performance on new data than training data.
Fundamental trade-off:

— How low can make the training error? (Complex models are better here.)
— How does training error approximate test error? (Simple models are better here.)

Golden rule: we cannot use test data during training.
But validation set or cross-validation allow us to approximate test error.
No free lunch theorem: there is no ‘best’ machine learning model.



Probabilistic Classifiers and Naive Bayes

Probabilistic classifiers consider probability of correct label.
— p(y; = “spam”| x) vs. p(y, = “not spam” | x.).

Generative classifiers model probability of the features:
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For tractability, often make strong independence assumptions.
— Naive Bayes assumes independence of features given labels:
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Decision theory: predictions when errors have different costs.
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Parametric and Non-Parametric Models

Parametric model size does not depend on number of objects ‘n’.
Non-parametric model size depends on ‘n’.

K-Nearest Neighbours:

— Non-parametric model that uses label of closest x; in training data. »
— Accurate but slow at test time. 9 4

17 55

Curse of dimensionality: /‘? q
— Problem with distances in high dimensions.

Universally consistent methods:
— achieve lowest possible test error as ‘n’” goes to infinity.



Ensemble Methods and Random Forests

 Ensemble methods are classifiers that have classifiers as input:
— Boosting: improve training error of simple classifiers.
— Averaging: reduce overfitting of complex classifiers.

e Random forests:
— Ensemble method that averages random trees fit on bootstrap samples.

— Fast and accurate, one of the best “out of the box” classifiers.




Clustering and K-Means

* Unsupervised learning considers features X without labels.
* Clustering is task of grouping similar objects.

* K-means is a classic clustering method:
— Represent each cluster by its mean value.
— Learning alternates between updating means and assigning to clusters.
— Sensitive to initialization, but some guarantees with k-means++.



Density-Based Clustering

* Density-based clustering is a non-parametric clustering method:

— Based on finding dense connected regions. .
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* Grid-based pruning: finding close points when ‘n’ is huge.




Ensemble and Hierarhical Clustering

 Ensemble clustering combines clusterings.
— But need to account for label switching problem.

e Hierarchical clustering groups objects at multiple levels.
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Outlier Detection

e Qutlier detection is task of finding “significantly different” objects.
— Global outliers are different from all other objects.
— Local outliers fall in normal range, but are dlfferent from neighbours.

* Approaches: [RET Y LR e
— Model-based: fit model, check probability under moael (z score)
— Graphical approaches: plot data, use human judgement (scatterplot).
— Cluster-based: cluster data, find points that don’t belong.

— Distance-based: outlierness test of “abnormally far form neighbours”.



Association Rules

e Association rules find items that are frequently bought together.
— (S =>T): if you buy ‘S’ then you are likely to buy ‘T".
— Rules have support, P(S=1), and confidence, P(T=1 | S=1).

» A priori algorithm finds all rules with high support/confidence.
— Probabilistic inequalities reduce search space.

e Amazon’s item-to-item recommendation: oo

— Compute similarity of ‘user vectors’ for items. \
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Linear Regression and Least Squares

 We then returned to supervised learning and linear regression:
— Write label as weighted combination of features: y, = w'x..

* Least squares is the most common formulation: X;
n
2
F(w> = 2 (Wxi - }’u)
1=

— Solution is a linear system: (X™X)w = X'y
— Non-zero y-intercept (bias) by adding a feature x; = 1.

— Model non-linear effects by change of basis: 2

)i = % T WX T WX



Regularization, Robust Regression, Gradient Descent

e L2-regularization adds a penalty on the L2-norm of ‘w’:
Fw)= 16yl + Al

— Several magical properties and usually lower test error.

* Robust regression replaces squared error with absolute error:
— Less sensitive to outliers.
— Absolute error has smooth approximations.

e

e Gradient descent lets us find local minimum of smooth objectives.

— Find global minimum for convex functions. v



Binary Classification and Logistic Regression

* Binary classification using regression by taking the sign:
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* But squared error penalizes for being too right (“bad errors”).

— |deal 0-1 loss is discontinuous/non-convex.
— Logistic loss is smooth and convex approximation:
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Support Vector Machines

* SVMs for separable data maximize margin for separable data:

X

* For non-separable data, hinge loss minimizes penalizes violations:
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Kernel Trick

* Non-separable data can be separable in high-dimensional space:
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e Kernel trick: linear regression using similarities instead of features.
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— If you can compute inner product, you don’t to store basis z..
— Can have exponential/infinite basis.



Stochastic Gradient

e Stochastic gradient methods are appropriate when ‘n’ is huge.
— Take step in negative gradient of random training example.
* Less progress per iteration, but iterations don’t depegld on ‘n’.

— Fast convergence at start.
— Slow convergence as accuracy improves.

 With infinite data:

— Optimizes test error directly (cannot overfit).
— But often difficult to get working.




Feature Selection and L1-Regularization

Feature selection is task of finding “relevant” variables.
— Can be hard to precisely define “relevant”.

Hypothesis testing methods:

— Do tests trying to make variable ‘j’ conditionally independent of .
— lgnores effect size.

Search and score methods:

— Define score (LO-norm) and search for variables that optimize it.
— Finding optimal combination is hard, but heuristics exist (forward select).

L1-regularization: \/
— Formulate as a convex problem. S

— Very fast but prone to false positives. N 2
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Maximum Likelihood Estimation

* We discussed maximum likelihood estimation:
P(yl X w)
" J kelihood )

* And how this is equivalent to minimizing negative log-likelihood:
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 Makes connection between probabilities and loss functions:
— Gaussian likelihood => squared loss.
— Laplace likelihood => absolute loss.
— Sigmoid likelihood => logistic regression.



MAP Estimation

e We discussed MAP estimation:
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— Prior can take into account that complex models can overfit.

* Makes connection between probabilities and regularization:
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Softmax Loss for Multi-Class Classification

e Sometimes it’s easier to define a likelihood than a loss function.
— Softmax probability:

‘7<)" = c 'x,~> W) < ex'o(w;x,')

* We have a vector wc for each class ‘c’, and classify by choosing largest w_x..

— Leads to softmax loss for multi-class classification:
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— Can define other Iosses based on other probabilities or probability ratios.



Latent-Factor Models

* Latent-Factor models approximate x. with low-dimensional z;:
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Principal Component Analysis

Principal component analysis (PCA): LFM based on squared error.

f(W2)= 22 (=5 = llzw-xi

=1 5t
With 1 factor, minimizes ‘orthogonal’ distance: Prinpa compneit analysis
: : : Xz
To give unique solution:
— Constrain factors to have norm of 1. <

— Constrain factors to have inner product of O.
— Fit factors sequentially.

Found by SVD or alternating minimization.



Beyond PCA

* Non-negative matrix factorization:

— Latent-factor model with non-negative constraints.

— Sparsity due to non-negativity means we learn ‘parts’.

* Could use different loss functions or regularizers:

— Robust PCA.
— Sparse PCA.
* Collaborative filtering: S > 4 3 2 3 3]
— Use LFMs to “fill in” missing values in matrix. Y = ‘W{ "7 ' "; z_ Z
cor 7
— SVDfeature combines this with linear models. - 2 3 7 1 -




Multi-Dimensional Scaling

e Jdio 22 lege distance in
loys ditaner -‘-;I;“ oz
small distaxe small dufance
'lf in space of x; n Spece of 2

M Space i"i
Z

Multi-dimensional scaling:
— Non-parametric visualization.
— Find low-dimensional ‘z that preserve distances.

Classic MDS and Sammon mapping are similar to PCA.
ISOMAP uses graph to approximate geodesic distance on manifold.




Neural Networks and Deep Learning

e Neural networks combine latent-factor and linear models.

— Linear-linear model is degenerate, so introduce non-linearity:
e Sigmoid or RelLU function.

— Backpropagation uses chain rule to compute gradient.
* Deep learning considers many layers of latent factors.
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* A lot of tricks are needed to make deep learning work:
— Parameter initialization
— Setting stochastic gradient step sizes.
— L2-regularization, early stopping, dropout.




Convolutional Neural Networks

e Convolutional neural networks:

— Incorporate convolutional and max-pooling lavers.
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Convolutions  Subsampling Convolutions  Subsampling

* Unprecedented performance on vision tasks.
* Lots of neat new applications:




Semi-Supervised Learning

e Semi-supervised learning considers labeled and unlabeled data.
— Sometimes helps but in some settings it cannot.

— Inductive SSL: use unlabeled to help supervised learning.
— Transductive SSL: only interested in these particular unlabeled examples.

* Self-training methods alternate between labeling and fitting model.



Random Walks and Markov Chains

We often have data organized according to a graph:

— Could construct graph based on features and KNNs.

— Or if you have a graph, you don’t need features.

Models based on random walks on graphs:

— PageRank: how often does infinitely-long random walk visit page?
— Graph-based SSL: which label does random walk reach most often?
Markov chains are probabilistic models of sequences:

1. Sampling using random walk.

2. Inference using matrix multiplication.

3. Stationary distribution using principal eigenvector.

Most common model of sequential data.



1.

2.

3.

4.

CPSC 340: Overview

Intro to supervised learning (using counting and distances).
— Training vs. testing, parametric vs. non-parametric, ensemble methods.
— Fundamental trade-off, no free lunch, universal consistency.

Intro to unsupervised learning (using counting and distances).
— Clustering, outlier detection, association rules.

Linear models and gradient descent (for supervised learning)
— Loss functions, change of basis, regularization, feature selection.
— Gradient descent and stochastic gradient.

Latent-factor models (for unsupervised learning)
— Typically using linear models and gradient descent.

Neural networks (for supervised and multi-layer latent-factor models).

Markov chains
— Random walk models for sequences and data living on graphs.



CPSC 340 vs. CPSC 540

* Goals of CPSC 340 this term: practical machine learning.
— Make accessible by avoiding some technical details/topics/models.
— Present most of the fundamental ideas, sometimes in simplified ways.
— Choose models that are widely-used in practice.

e Goals of CPSC 540 next term: research-level machine learning.
— Covers complicated details/topics/models that we avoided.
— Targeted at people with algorithms/math/stats/sciComp background.
— Goal is to be able to understand ICML/NIPS papers at the end of course.
* Rest of this lecture:
— What did we not cover? <~ What I’'m planning to cover in CPSC 540.



1. Large-Scale Machine Learning

 We’ll also fill in details of topics we’ve ignored:
— How do we convexity of general multivariate functions?
X'DX % 0
— How many iterations of gradient descent do we need?
$(w) = Fl¥) € ([~ [ £ -F(F)]
— How do we solve non-smooth optimization problems?

‘F(W) < c w
will AWSL
— How can get sparsity |n terms of ‘groups’ or ‘patterns’ of variables?
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— How can we apply kernels to general Ilnear models?
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2. Density Estimation

 Methods for estimating multivariate distributions p(x).
— Abstract problem, includes most of ML as a special case.
— But going beyond simple Gaussian and independent models.

Density Curves

* Classic models: . n .
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— Mixture models.

— Non-parametric models.

— Markov chains.

e Morel

social situations.




3. Structured Prediction and Graphical Models

e Structured prediction:
— Instead of class label ‘y;, our output is a general object.
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e Conditional random fields and structured support vector machines.
* Relationship of graph to dynamic programming (treewidth).

* Variational and Markov chain Monte Carlo for inference/decoding.
* Unsupervised deep learning: Boltzmann machines and GANSs.




4. Bayesian Statistics

* Key idea: treat the model as a random variable.
— Now use the rules of probability to make inferences.
— Learning with integration rather than differentiation.

* Can do things with Bayesian statistics that can’t otherwise be done.

— Bayesian model averaging. Group Level
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— Hierarchical models. o | \g g
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— Optimize regularization parameters and things like ‘k’. subjecr™ /- e
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— Allow infinite number of latent factors. 77 =& .
— Non-IlID data. - e .




5. Recurrent Neural Networks

e How can we add memory to deep learning?

— Recurrent neural nets, long short-term memory, neural Turing machine.
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https://www.youtube.com/watch?v=mLxsbWAYIpw

6. Online and Active Learning (Time Permitting)

* Online learning:
— Training examples are streaming in over time.
— Want to predict well in the present.
— Not necessarily IID.

* Active learning:
— Generalization of semi-supervised learning.
— Model can choose which example to label next.



6. Causal Learning (Time Permitting)

* Causal learning:
— Observational prediction (CPSC 340):

* Do people who take Cold-FX have shorter colds?

— Causal prediction:

* Does taking Cold-FX cause you to have shorter colds?

— Counter-factual prediction:
* You didn’t take Cold-FX and had long cold, would taking it have made it shorter?

* Modeling the effects of actions.
* Predicting the direction of causality.



7. Reinforcement Learning (Time Permitting)

e Reinforcement learning puts everything together:
— Use observations to build a model of the world (learning).
— We care about performance in the present (online).
— We have to make decisions (active).
— Our decisions affect the world (causal).

https://www.youtube.com/watch?v=lh8EfvOzBQOY
https://www.youtube.com/watch?v=SH3bADiB7uQ
https://www.youtube.com/watch?v=nUQsRPJ1dYw
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https://www.youtube.com/watch?v=SH3bADiB7uQ
https://www.youtube.com/watch?v=SH3bADiB7uQ
https://www.youtube.com/watch?v=nUQsRPJ1dYw

Final Slide: Data Science Job Board

* Data Science Job Board: http://makedatasense.ca/jobs

— Set up by students to connect employers/employees.
— More companies looking for people than people looking for jobs.
— Make a profile if you are looking for a job in this area.



http://makedatasense.ca/jobs

