CPSC 340:
Machine Learning and Data Mining



Admin

* Assignment 5:
— 2 late days to hand in Wednesday, 3 for Friday.

* Assignment 6:

— Due Friday, 1 late day to hand in next Monday, etc.
* Final:

— December 12 (8:30am — HEBB 100)

— Covers Assignments 1-6.

— List of topics posted.

— Final from last year will be posted Friday.

— Closed-book, cheat sheet: 4-pages each double-sided.



Ranking

 The ranking problem:

— Input: a set of objects and some information about “ordering”.

— QOutput: an ordering of the objects.

THE REMATCH OF THE CENTURY




Ranking

 The ranking problem: R ..
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— Input: a set of objects and some measure of relative “ordering”.
— Output: an ordering of the objects.

 Examples:
Go gle ranking a

Web Images MNews Videos Maps Mare = Search tools

— Country comparisons (Global Hunger Index).

About 658,000,000 results {0.37 seconds)

— Academic journals (Impact factor). @407

-
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— Sports/gaming (Elo and TrueSkill). \/ : ):" o

Ranking - Wikipedia, the free encyclopedia

hitps://en wikipedia org/wiki/Ranking ~

Aranking is a relationship between a set of items such that, for any two items, the first
is either ranked higher than', 'ranked lower than” or ‘ranked equal to’ the

Strategies for assigning rankings - Ranking in statistics - Examples of ranking

You visited this page on 16/11/15

University Rankings | Top Universities
www.topuniversities.com/university-rankings ~

Q5 University Rankings: Arab Region 2015. .. Compare the world's highest-performing
universities with the latest edition of the QS World University Rankings®, and explore
the leading universities in different world regions and in specific subject areas

. La rge’ d IVe rS e’ a n d We | I -St u d I e d to p I C [ 2;ﬁ;rr\dthljr;}:'neilgi;?tlsznkings - QS University Rankings: Asia - QS Top 50 Under 50

QS World University Rankings® 2015/16 | Top Universities
www.topuniversities.com » Rankings » World University Rankings «

L
— We fo C u S O n I e a r n I n g to ra n k B Welcome to the QS World University Rankings® 2015/16. Use the interactive ranking

table to explore the world's top universities, with options to sort the results

— Internet search engines.

Ranking Web of Universities
www.webometrics.info/ ~
A directory of world universities ranked according their presence on the Web



Supervised Ranking

Ranking based on supervised learning:

— We have features x, for each object ‘i’, and “information” about labels y..

Forms the “information” can take:

1. Item relevance:

 Explicit numerical “scores” y..
2. Pairwise preference:

* Pairs ‘i" and '} where we know y; > y;.

* But we don’t know the “score” of any items.
3. Total/partial ordering:

* Larger sets of items where we know y, >y, >y, >y > ..



Supervised Ranking with Item Relevance

With item relevance we have explicit “score” y, for each object ".
We can rank with regression:
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Compute score of new object ‘i’ based on its features ..
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If scores are ordinal {1,2,3,..,k}, can use ordinal logistic regression.



Supervised Ranking with Query

« Common variation on ranking includes query ‘q'.
— E.g., for web search it could the keywords.
 Can adapt item relevance to this setting:

— Measure features x;, of object/query combination.
— Item relevance y,, gives “score” of object/query combination.
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* Unfortunately, item relevance may be hard to get:
— Active human effort to produce meaningful labels across queries/objects.
— How do you compare ‘CPSC 340’ to ‘shoe’ or ‘moon’ to ‘Tuesday’ on same scale?



Supervised Ranking with Pairwise Preferences

 More realistic is pairwise preferences:
— We aren’t given any explicit y, values.
— Instead we're given list of objects (i,j) where y; > y..

— E.g., which one looks more like ‘smoke’:

* Much easier than asking artist for score.
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* Can we design a loss function with this label information?



Digression: Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Digression: Loss Functions from Probability Ratios

 We’'ve seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

 Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Digression: Loss Functions from Probability Ratios

 We’'ve seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

 Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Digression: Loss Functions from Probability Ratios

 We’'ve seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

 Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Digression: Loss Functions from Probability Ratios

* General approach for defining losses using probability ratios:
1. Define constraint based on probability ratios.
2. Minimize violation of logarithm of constraint.

* Example: softmax => multi-class SVMs.
ASSwv\e‘ f’(}’l TC |Xi)"") X €x ,0 (wjy.) 0'0 '//0/\ : /Jf/‘ a/izé all vio /a;f/ar\si

Wanf’ 03(/, ’X,; ) ‘ﬁ Fdr all 2 I’V)aygo | = ;
’9()/, 'k w) ond some ﬂ?'

F ﬁ (1) lorid 1 OI)koﬂ 2 ,oemm/ize Oﬂl/ may I/l'o/a'}iowf
or D= €éx Cywyalen 0 T
f 'T‘/ T Max %MQ)‘ % 0 } — W}’/Tx' +M€'X,)Zg
W)’i yl o \AQ Xi 2 | C“;éc )
for —H C' £ Yi



Supervised Ranking with Pairwise Preferences

* Ranking with pairwise preferences:
— We aren’t given any explicit y, values.
— Instead we're given list of objects (i,j) where y; > y..
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(pause)
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Unsupervised Graph-Based Ranking

* |nstead of supervision, what if we have graph between examples?
— Every paper is a node, and every citation is an edge.
— Every Facebook user is a node, and every “friendship” is an edge.
— Every webpage is a node, and every web-link is an edge.

facebook




Unsupervised Graph-Based Ranking

Instead of supervision, what if we have graph between examples?
— Every paper is a node, and every citation is an edge.

— Every Facebook user is a node, and every “friendship” is an edge.

— Every webpage is a node, and every web-link is an edge.

Key idea: use links (edges) to predict important of nodes.

Many link analysis methods, usually with recursive definitions:
— Ajournal is “influential” if it is cited by “influential” journals.

We will discuss PageRank, Google’s original ranking algorithm.



PageRank

* Wikipedia’s cartoon illustration of PageRank:

— Large face => higher rank. > i

e Key ideas:

—@ |

— Important webpages are linked from
other important webpages.

— Link is more meaningful if a webpage pﬂgEHﬂ“I‘i
has few links.




Random Walk View of PageRank

 PageRank algorithm can be interpreted as a random walk:
— At time t=0, start at a random webpage.
— At time t=1, follow a random link on the current page.
— At time t=2, follow a random link on the current page.

* PageRank:
— Probability of landing on page as t->co.
* Obvious problem:

— Pages with no in-links have a rank of 0.
— Algorithm can get “stuck” in part of the graph.




Random Walk View of PageRank

* Fix: add small probability of going to a random webpage at time ‘t’.

 Damped PageRank algorithm:
— At time t=0, start at a random webpage.
— At time t=1:
e With probability a: go to a random webpage.
* With probability (1- a): follow a random link on the current page.

— At time t=2, follow a random link on the current page.
* With probability a: go to a random webpage.
e With probability (1- a): follow a random link on the current page.

* PageRank:
— Probability of landing on page as t->co.



Markov Chains

* This random walk algorithm is a special case of a Markov chain:

— Most common framework for modeling sequences.

 Bioinformatics, physics/chemistry, speech recognition, predator-prey models,
language tagging/generation, computing integrals, economic models, tracking

missiles/players, modeling music. Melody Generator
Generates a random melody using Markov Chains built from states
"AT-rich" wheel “GC-rich" wheel and transitions extracted from an analysis of existing songs.

0.075
" Bul /A\’ Bear D
' | |
0.9 et wrket L m :-uhr 0.8
15

1. Sequence 2. Analysis 3. Generate + Ouiput

p=0.3 of
changing wheel

‘e ———
p=0.1of
changing wheel

p,=0.39, p,=0.1, p=0.1, p,=0.41 0.1, p,=0.41, p=0.39, p,=0.1 0.05

Y
{ Stagnant |

'-‘\ il-li'll'klit |- 1 n
U ‘
g s -
0.5 ? e
§ " @




Part 6: Markov Chains

 Random walk algorithm is a special case of a Markov chain.
 Markov chain ingredients:

— State space:

» Set of possible states we can be in at time ‘t” (webpages for PageRank).
— Initial probabilities:

* p(x, = s) that we start in state ‘s’ at time O.
— Transition probabilities:

* p(x,=s | x,; =5’) that we move to state s to state s

* This model makes the Markov assumption:

— Our state time at ‘t” only depends on the state at time t-1.

* Often assume homogeneous chain: transitions constant with ‘t’.



Markov Chains

3 things you can do with Markov chains:

— You can simulate sequences:
* Sample state x, from initial probabilities.
e Fort=1:.d
— Sample x, from transition probabilities.
— Compute marginal probability of being in state ‘s’ at time ‘t’:
e At time O, just use the initial probabilities.

e At time t >0, marginalization and product rules gives recursive formula:
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— Compute stationary distribution (PageRank):

 P(x, =5s) as ‘t’ goes to infinity.
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PageRank Computation

 Monte Carlo method for computing PageRank:
— Just run the random walk algorithm a really long time.

— Count the number of times you visit each webpage.
* Maybe include a “burn in” time at the start where you don’t count pages.
e Can parallelize by using random ‘m’ independent surfers.

— Intuitive but slow.

* |t can also be solved analytically with SVD:
— But O(n3) for ‘n’ webpages.

* Google’s approach is the power method:
— Repeated multiplication by transition matrix: O(nLinks) per iteration.



Application: Game of Thrones

 PageRank can be used for other applications.
e “Who is the main character in the Game of Thrones books?”

ol Rhaegar
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o ey Figure 2. The social network
® generated from A Storm of
Cutays  Swords. The color of a vertex
@ indicates its community. The
size of a vertex corresponds to

its PageRank value, and the size
of its label corresponds to its
betweenness centrality. An edge’s
thickness represents its weight.




Ranking Discussion

* Modern ranking methods are more advanced:
— Guarding against methods that exploit algorithm.
— Removing offensive/illegal content.
— Personalized recommendations.
— Take into account that you often only care about top rankings.

— Define losses that are not additive across ratings.
* “Precision at k”: if we return k documents, how many are relevant?
* “Average precision”: precision at k averaged across values of k.

— You can still define losses based on probability ratios:

* But you get exponential number of terms, need more advanced optimization tricks.
— Also work on diversity of rankings:

* E.g., divide objects into sub-topics and do weighted ‘covering’ of topics.
— Persistence/freshness as in recommender systems.



Summary

Ranking orders objects based information about relationships.
Supervised ranking contains explicit label information:

— Item relevance assumes we have “scores” y..
— Pairwise preferences assume we have relative rankings y; > y..

Probability ratios allow us to define more loss functions.

Graph-based ranking uses links to solve ranking queries.
— PageRank is based on a model of a random web user.

Markov chains are a general framework for modeling sequences.

Next time: finding all the cat videos on YouTube.



