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Admin

* Assignment 5:

— Due Friday, 1 late day to hand in Monday, etc.
* Assignment 6:

— Due next Friday (usual late day policy, assuming phantom “classes”).
* Final:

— December 12 (8:30am — HEBB 100)

— Covers Assignments 1-6.

— Final from last year and list of topics will be posted.
— Closed-book, cheat sheet: 4-pages each double-sided.



Last Lectures: Deep Learning

We’ve been discussing neural network / deep learning models:
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On Friday we discussed unprecedented vision/speech performance.
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Last Lectures: Deep Learning

* We've been discussing neural network / deep learning models:

V.= w hOWRW ™ R~ W Ry ))-))

* On Monday we discussed heuristics to make it work:
— Parameter initialization and data transformations.
— Setting the step size(s) in stochastic gradient.
— Alternative non-linear functions like RelLU.
— Different forms of regularization:

e L2-regularization, early stopping, dropout.

* These are often still not enough to get deep models working.



Motivation: Automatic Brain Tumor Segmentation

e Task: segmentation tumors and normal tissue in multi-modal MRI data.
Input: Output:

* Applications:
— Radiation therapy target planning, quantifying treatment responses.
— Mining growth patterns, image-guided surgery.

e Challenges:

— Variety of tumor appearances, similarity to normal tissue.
— “You are never going to solve this problem.”



Naive Voxel-Level Classifier

* We could treat classifying a voxel as supervised learning:

= (18, 197,246 ) Y= Tumour

* We can formulate predicting y; given x; as supervised learning.
* But it doesn’t work at all with these features.



Need for Context

* The individual voxel values are almost meaningless:

— This x; could lead to different y..

* Intensities not standardized.
* Non-trivial overlap in signal for different tissue types.
e “Partial volume” effects at boundaries of tissue types.



Need for Context

|II

* We need to represent the spatial “context” of the voxel.

— Include all the values of neighbouring voxels?

* Using all voxels requires lots of data to find patterns.

— Measure summary statistics (mean, variance, etc.) of the neighbourhood?

* Loses spatial information present in voxels.

— Standard approach is uses convolutions to represent neighbourhood.



1D Convolution

e 1D convolution input:

— Signal ‘x” which is a vector length ‘n’. )(:[0 11 2 3 § ¢ [}]
* Indexed by i=1,2,...,,n.
— Filter ‘w” which is a vector of length 2m+1’: w = C O -~ 2 -] O]

* Indexed by i=-m,-m+1,...-2,0,1,2,...,m-1,m w, W, W, W w

* 1D convolution output:
— New vector ‘Z’ of length ‘n” with elements:
Zi: W Xi-m F Wt Xi-mi T tw M Yitwtl t Win Yitm
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1D Convolution Examples

* Element z of 1D convolution is given by:

= + -.- + .
zi = Wy Xiom + Wt Xi-m+ + W itmtl | Vi Yitm

* Examples: let x=LO 1 1 2 3 5 8 ,;]
— “Identity”
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1D Convolution Examples

* Element z of 1D convolution is given by:

= + -.- + .
zi = Wy Xiom + Wt Xi-m+ + W itmtl | Vi Yitm

e Examples: Lt x=LO 1 1 2 3 5 8 13]
— “Identity”
T cco1 0y 2=LO 1 1 23 & 818

— “Average”

—sw=C% % %)

| ) o ~—
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Boundary Issue

* What can we about the “?” at the edges?
T6 L0 1123 5313 adwill %) tn 2?7 % 15238555 7

* Can assign values past the boundaries:

« “Zero”: x=00 0O ;O \ I 1l 3 T 3 ,3-1 O OO0
. ”Replicate”: x=0 0 O :O \ ' L 3 g 3 ’gj B I3 B
* “Mirror”: x= A | | CO \ | L 3 5 3 '{j g g 3

* Orjustignore the “?” values and return a shorter vector:

=[% 1y 2 3% 6% ¢%)



1D Convolution in Matrix Notation

* Each element of a convolution is an inner product:

- 4 ... + ‘
Zi = Wy Xiom + Wt Xi-m+ + Wott Yitmt! Wi Yitm

=2 WX
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* So convolution is a matrix multiplication:
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Why is this useful?

e Consider a 1D dataset:

— Want to classify each
time intoy, in {1,2,3}.

4
>
42k

— Example: sound data.

* Easy to distinguish class 2 from the other classes (x, are smaller).

* Harder to distinguish between class 1 and class 3 (similar x, range).
— But convolutions can represent that class 3 is more “spiky”.



1D Convolution Examples

* Translation convolution shift signal:

w=Ll 0000 0 0 00]




1D Convolution Examples

* Averaging convolution computes local mean:

W:s:l/b ’/; ,/3]




1D Convolution Examples

* Averaging over bigger window gives coarser view of signal:
/ / ( /
L e ]




1D Convolution Examples

-2
L
* Gaussian convolution blurs signal: ~ W;Xexp 2@1)

— Compared to averaging it’s more smooth and maintains peaks better.
W= [ 0.0000 0.0644 00540 0.1420 (03459 0.2420 (0540 0,084 0.000/ ]
(o - l) m> Y
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1D Convolution Examples

* Sharpen convolution enhances peaks.

w=l-l 3 )




1D Convolution Examples

e Laplacian convolution approximates derivative:

w=l-1 2 -]




1D Convolution Examples

e Laplacian convolution approximates derivative:

w=l-1 2 -]




1D Convolution Examples

e Laplacian of Gaussian approximates derivative after blurring:

W= L0116 Q1781 ~(R740 QIID 05467 Olfso ~Ca7¥ 0 Qi)
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1D Convolution Examples

e We often use maximum over several convolutions as features:
— We could take maximum of Laplacian of Gaussian over x, and its 16 KNNs.
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Why is this useful?
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ime
Easy to distinguish class 2 from with original signal.

Easy to distinguish class 1 from 3 with max(Laplacian(Gaussian)).

— Convolutions and max(convolutions) are very useful for sequence data.
* For sound data two related techniques are Fourier transforms and spectrograms.




Images and Higher-Order Convolution

* 2D convolution:
— Signal x’ is the pixel intensities in an ‘n’ by ‘n’ image.
— Filter ‘w’ is the pixel intensities in a 2m+1’ by 2m+1’ image.
* The 2D convolution is given by:
M
“ZE),),')J = ’é 2 W['S;,‘)'JXE/, ﬂ',)iz +J'2]
LA Pt

* 3D and higher-order convolutions are defined similarly.

[ 1,3] 2 Z Z "VL)')JM;)X[' 221z * )
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Image Convolution Examples ;
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples ...,
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples




Image Convolution Examples




Image Convolution Examples
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Image Convolution Examples




Image Convolution Examples
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Image Convolution Examples
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http://setosa.io/ev/image-kernels

Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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3D Convolution
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3D Convolution
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3D Convolution
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3D Convolution
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3D Convolution
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Motivation for Convolutional Neural Networks

* Consider training neural networks on 256 by 256 images.

* Each z in first layer has 65536 parameters (and 3x this for colour).
— We want to avoid this huge number (due to storage and overfitting).

* Key idea: make Wx; act like convolutions (to make it smaller):

— Each row of W only applies to part of x..
W=L0 0 b —— w— 000

W___,oDOOD]

— Use the same parameters between rows.
P w,=L0



Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.
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Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to results of several convolutions.
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Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to results of several convolutions.
— Pooling layer: downsamples result of convolution.

e Can add invariances or just make the number of parameters smaller.

e Usual choice is ‘max pooling’: /1
o\

over 2Ax1
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LeNet for Optical Character Recognition




Summary

Convolutions are flexible class of signal/image transformations.
Max(convolutions) can yield features that make classification easy.
Convolutional neural networks:

— Restrict W(m) matrices to represent sets of convolutions.
— Often combined with max (pooling).

Next time: modern convolutional neural networks and applications.
— Image segmentation, depth estimation, image colorization, artistic style.



