CPSC 340:
Machine Learning and Data Mining

Deep Learning
Fall 2016



Admin

* Assignment 5:
— Due Friday.
* Assignment 6:
— Due next Friday.
* Final:
— December 12 (8:30am — HEBB 100)
— Covers Assignments 1-6.

— Final from last year and list of topics will be posted.
— Closed-book, cheat sheet: 4-pages each double-sided.



DEEP HIERARCHIES IN THE VISUAL SYSTEM
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Last Time: Deep Learning
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Autoencoders

* Autoencoders are an unsupervised deep learning model:

— Use the inputs as the output of the neural network.

encoder decoder

W1 w2 w2" w1

— Middle layer could be latent features in non-linear latent-factor model.

e Can do outlier detection, data compression, visualization, etc.



Autoencoders
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Denoising Autoencoder

Denosing autoencoders add noise to the input:

encoder decoder

W1 w2 w2" w1

— Learns a model that can remove the noise.



Deep Learning Practicalities

* This lecture focus on deep learning practical issues:
— Backpropagation to compute gradients.
— Stochastic gradient training.
— Regularization to avoid overfitting.

* Next lecture:
— Special ‘W’ restrictions to further avoid overfitting.



Last Time: Backpropagation with 1 Hidden Layer

Squared loss our objective function with 1 layer and 1 example:
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Gradient with respect to element of vector ‘w’.
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Gradient with respect to element of matrix ‘W’.
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Only r; changes if you aren’t using squared error.




Last Time: Backpropagation with 1 Hidden Layer

* Squared loss our objective function with 1 layer and 1 example:

K 7
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* Gradient with respect to elements of vector ‘w’ and ‘W’:
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* Backpropagation algorithm:
— Forward propagation computes z, = h(W x.) then w'z..
— Backpropagation step 1: use r, to get gradient of ‘w’
— Backpropagation step 2: use r, and v, to get gradient of ‘W".



Backpropagation with 2 Hidden Layer

* General objective function with 2 layers and 1 example:
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* Gradient with respect to element of vector ‘w’: -
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* Gradient with respect to element of matrlx W(Z)’)
u @ u () ¢ N — |
;wva (mWW)= £ (" ROV (W) )wch(W h(W* ))wo = vz

* Gradient with respect to element of matrix ‘WL’
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Last Time: Backpropagation with 3 Hidden Layers

* General objective function with 3 layers and 1 example:
£y W W W)= £ (W h (W AW x)))
* Gradients have the form:
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— Forward propagation computes ‘r’ and z(™ for all ‘m’.
— Backpropagation step 1: use ‘r’ to get gradient of ‘w’.
— Backpropagation step 2: use a. to get gradient of W),
— Backpropagation step 3: use b_to get gradient of W),
— Backpropagation step 4: use d_ to get gradient of W),



Last Time: Backpropagation with 3 Hidden Layers

* Backpropagation algorithm:
— Forward propagation computes ‘r’ and z(™ for all ‘m’.
— Backpropagation step 1: use r to get gradient of ‘w’.
— Backpropagation step 2: use a_ to get gradient of W),
— Backpropagation step 3: use b_ to get gradient of W)
— Backpropagation step 4: use d. to get gradient of W),
* Cost of backpropagation:

— Forward pass dominated by multiplications by W), W), WG) and ‘w’.
* If have ‘m’ layers and all z, have ‘k’ elements, cost would be O(dk + mk?).

— Backward pass has same cost.

* For multi-class or multi-label classification, replace ‘w’ by matrix.
— Softmax loss is called “cross entropy” in neural network papers.



Last Time: ImageNet Challenge

ImageNet challenge:
— Use millions of images to recognize 1000 objects.

ImageNet organizer visited UBC summer 2015.
“Besides huge dataset/model/cluster, what is the most important?”

1. Image transformations (translation, rotation, scaling, lighting, etc.).
2. Optimization.
Why would optimization be so important?

— Neural network objectives are highly non-convex (and worse with depth).
— Optimization has huge influence on quality of model.



Stochastic Gradient Training

e Standard training method is stochastic gradient (SG):
— Choose a random example V.
— Use backpropagation to get gradient with respect to all parameters.
— Take a small step in the negative gradient direction.

* Challenging to make SG work:
— Often doesn’t work as a “black box” learning algorithm.
— But people have developed a lot of tricks/modifications to make it work.
* Highly non-convex, so are the problem local mimina?
— Some empirical/theoretical evidence that local minima are not the problem.

— If the network is “deep” and “wide” enough, we think all local minima are good.
— But it can be hard to get SG to even find a local minimum.



Parameter Initialization

* Parameter initialization is crucial:
— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’t initialize weights too large, it will take too long to learn.

e A traditional random initialization:

— Initialize bias variables to O.
— Sample from standard normal, divided by 10° (0.00001*randn).
— Performing multiple initializations does not seem to be important.

* Popular approach from 10 years ago:
— Initialize with deep unsupervised model (like autoencoders).



Parameter Initialization

* Parameter initialization is crucial:
— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’t initialize weights too large, it will take too long to learn.

* Also common to standardize data:
— Subtract mean, divide by standard deviation, “whiten”, standardize y..

* More recent initializations try to standardize initial z;:
— Use different initialization in each layer.
— Try to make variance of z, the same across layers.
— Use samples from standard normal distribution, divide by sgrt(2*nlnputs).
— Use samples from uniform distribution on [-b,b], where b= A

—m—



Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.

e Common approach: manual “babysitting” of the step-size.
— Run SG for a while with a fixed step-size.
— Occasionally measure error and plot progress:
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— If error is not decreasing, decrease step-size.



Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.

 More automatic method is Bottou trick:
1. Grab a small set of training examples (maybe 5% of total).
2. Do abinary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

* Several recent methods using a step size for each variable:
— AdaGrad, RMSprop, Adam.



Setting the Step-Size

Stochastic gradient is very sensitive to the step size in deep models.

Bias step-size multiplier: use bigger step-size for the bias variables.
Momentum:

— Add term that moves in previous direction:

| _ -
\/\/6 = w “o(tvr,' (w*) *ﬁt(wé'wt ')
= Keep gory 1"
old  direclion
Batch size (number of random examples) also influences results.

Another recent trick is batch normalization:

— Try to “standardize” the hidden units within the random samples as we go.
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Vanishing Gradient Problem

Consider the sigmoid function:

. O .. :
Away from the origin, the gradient is nearly zero.
The problem gets worse when you take the sigmoid of a sigmoid:
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In deep networks, many gradients can be nearly zero everywhere.




Rectified Linear Units (RelLU)

* Replace sigmoid with hinge-like loss (ReLU):
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* The gradient is zero or x,, depending on the sign.

— Fixes vanishing gradient problem.
— Gives sparser of activations.

— Not really simulating binary signal, but could be simulating rate coding.



Deep Learning and the Fundamental Trade-Off

* Neural networks are subject to the fundamental trade-off:
— As we increase the depth, training error decreases.
— As we increase the depth, training error no longer approximates test error.

* We want deep networks to model highly non-linear data.
— But increasing the depth leads to overfitting.

* How could GooglLeNet use 22 layers?

— Many forms of regularization and keeping model complexity under control.



Standard Regularization
* We typically add our usual L2-regularizers:
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e L2-regularization is called “weight decay” in neural network papers.
— Could also use L1-regularization.

 “Hyper-parameter” optimization:
— Try to optimize validation error in terms of A;, A, A3, A,.

* Unlike linear models, typically use multiple types of regularization.



Early Stopping

* Second common type of regularization is “early stopping”:

— Monitor the validation error as we run stochastic gradient.

— Stop the algorithm if validation error starts increasing.

A

accuracy

training accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting
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Dropout

 Dropout is a more recent form of regularization:
— On each iteration, randomly set some x, and z, to zero (often use 50%).
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(a) Standard Neural Net (b) After applying dropout.
— Encourages distributed representation rather than using specific z..



Convolutional Neural Networks

* Typically use multiple types of regularization:
— L2-regularization.
— Early stopping.
— Dropout.

e Often, still not enough to get deep models working.

* Deep computer vision models are all convolutional neural nets:
— The W(™) are very sparse and have repeated parameters (“tied weights”).
— Drastically reduces number of parameters (speeds up training).



Summary

Autoencoders are unsupervised neural net latent-factor models.
Parameter initialization is crucial to neural net performance.
Optimization and step size are crucial to neural net performance.

Regularization is crucial to neural net performance:
— L2-regularizaiton, early stopping, dropout.

Next time:

— Convolutions, convolutional neural networks, and rating selfies.



