CPSC 340:
Machine Learning and Data Mining

Deep Learning
Fall 2016

Admin

* Assignment 5:
— Due Friday.
* Assignment 6:
— Due next Friday.
* Final:
— December 12 (8:30am — HEBB 100)
— Covers Assignments 1-6.

— Final from last year and list of topics will be posted.
— Closed-book, cheat sheet: 4-pages each double-sided.

DEEP HIERARCHIES IN THE VISUAL SYSTEM
LocATION FEATURE RECEPTIVE FELD SZE

RETINA PHOTORECEPTOR dode

.....

Last Time: Deep Learning

9
m Vi SIMPLE CELL &= I
AN

((2 Ny A it it
@08 G Zik
(2 /\\)\W‘ NG “/‘\ 11 I P P Qe X7
W I
>>A"g‘£ TE c;t:ﬂgﬂ 8 ACTION PLANING

Deff Ne MN\I networ ks:

Learn ‘W' and W' ey @ G G-z x/'\‘"\N_'l-s(\l\/w’\(W('))(;))
| fures 4 voed () TRSHUSABETIL o ecodenfed perk A
— learn foalures tor 5‘1{’—'5—-9“".' " W l’ ‘,"/"Js/‘\'. tprecodented pertorpone o ditlicul froblems

— Non=linear N makes i1 a m DED "EGCL 'a>1er (ombineg llr”+5h 7(;0'“ fm‘w I«yer.
! — Troin all layw5 ’}.,aeﬂ.&

Universal m”rrox'mo\‘for for lorge 'K
= Multiple loyers alloy moe "officedl" represedafin

Autoencoders

* Autoencoders are an unsupervised deep learning model:

— Use the inputs as the output of the neural network.

encoder decoder

W1 w2 w2" w1

— Middle layer could be latent features in non-linear latent-factor model.

e Can do outlier detection, data compression, visualization, etc.

Autoencoders

énCo tl(/

Ao

Interbank markets

European Community
monetary/economic

Energy markets

Disasters and
accidents

-’

w
S
S
-
[
=
B
=

Accounts/

eamings

€ o
36
E S
o O
5 =
X o O
¢ o
{
oo\\o"
% o
. A.f--‘ -
aw? 48,
pnt TF w/y
L%w..?,.rf.mo.

Denoising Autoencoder

Denosing autoencoders add noise to the input:

encoder decoder

W1 w2 w2" w1

— Learns a model that can remove the noise.

Deep Learning Practicalities

* This lecture focus on deep learning practical issues:
— Backpropagation to compute gradients.
— Stochastic gradient training.
— Regularization to avoid overfitting.

* Next lecture:
— Special ‘W’ restrictions to further avoid overfitting.

Last Time: Backpropagation with 1 Hidden Layer

Squared loss our objective function with 1 layer and 1 example:

Floy)= 1 (2w bW) = y)°

Gradient with respect to element of vector ‘w’.

Q%VG[P (W>W>] = (é We MWL’“) "‘)’() l‘\(WC x,-) = h(W, x)

c=l
__N\)

Gradient with respect to element of matrix ‘W’.

AW, U(WW)] (2 W, L\(w %)~ 7">Wc b (Wex) = X

— \ — 2
VO

Only r; changes if you aren’t using squared error.

Last Time: Backpropagation with 1 Hidden Layer

* Squared loss our objective function with 1 layer and 1 example:

K 7
](\(w) \/\/)2—:2'- (EWC hW, 7<|'> — y;>
* Gradient with respect to elements of vector ‘w’ and ‘W’:

= { W, ‘\(Wx) /
)| = r h(wer W= rvx |
Qwa[W)] QV‘/CJ[{:()) ° aﬂtj V, = WL l/\'(M{x,)

* Backpropagation algorithm:
— Forward propagation computes z, = h(W x.) then w'z..
— Backpropagation step 1: use r, to get gradient of ‘w’
— Backpropagation step 2: use r, and v, to get gradient of ‘W".

Backpropagation with 2 Hidden Layer

* General objective function with 2 layers and 1 example:
Fla, W W)= £ (uTh(W bW,)

* Gradient with respect to element of vector ‘w’: -
Q 12) D] 3) | (7 / :
2o LF oW W) = M}W 1)) RO h(W)) o =02

* Gradient with respect to element of matrlx W(Z)’)
u @ u () ¢ N — |
;wva (mWW)= £ (" ROV (W))wch(W h(W*))wo = vz

* Gradient with respect to element of matrix ‘WL’

W(')['F(W(z) WU)':) ‘F (w L(Wmh(wu)){‘)Z LW W(ﬂk Wu)))W(l) k(wﬂ))] __(y U.))(,
——— ~ M= | ——

4 v Y

) Wee

Last Time: Backpropagation with 3 Hidden Layers

* General objective function with 3 layers and 1 example:
£y W W W)= £ (W h (W AW x)))
* Gradients have the form:
I A A NS (AR s] X

WB)‘ - Qw(n‘ - = C' M
e 3 z?\:zc') :3,':'/“2&(") ey 5
* Backpropagation algorithm: = b 2. = CcXjj

— Forward propagation computes ‘r’ and z(™ for all ‘m’.
— Backpropagation step 1: use ‘r’ to get gradient of ‘w’.
— Backpropagation step 2: use a. to get gradient of W),
— Backpropagation step 3: use b_to get gradient of W),
— Backpropagation step 4: use d_ to get gradient of W),

Last Time: Backpropagation with 3 Hidden Layers

* Backpropagation algorithm:
— Forward propagation computes ‘r’ and z(™ for all ‘m’.
— Backpropagation step 1: use r to get gradient of ‘w’.
— Backpropagation step 2: use a_ to get gradient of W),
— Backpropagation step 3: use b_ to get gradient of W)
— Backpropagation step 4: use d. to get gradient of W),
* Cost of backpropagation:

— Forward pass dominated by multiplications by W), W), WG) and ‘w’.
* If have ‘m’ layers and all z, have ‘k’ elements, cost would be O(dk + mk?).

— Backward pass has same cost.

* For multi-class or multi-label classification, replace ‘w’ by matrix.
— Softmax loss is called “cross entropy” in neural network papers.

Last Time: ImageNet Challenge

ImageNet challenge:
— Use millions of images to recognize 1000 objects.

ImageNet organizer visited UBC summer 2015.
“Besides huge dataset/model/cluster, what is the most important?”

1. Image transformations (translation, rotation, scaling, lighting, etc.).
2. Optimization.
Why would optimization be so important?

— Neural network objectives are highly non-convex (and worse with depth).
— Optimization has huge influence on quality of model.

Stochastic Gradient Training

e Standard training method is stochastic gradient (SG):
— Choose a random example V.
— Use backpropagation to get gradient with respect to all parameters.
— Take a small step in the negative gradient direction.

* Challenging to make SG work:
— Often doesn’t work as a “black box” learning algorithm.
— But people have developed a lot of tricks/modifications to make it work.
* Highly non-convex, so are the problem local mimina?
— Some empirical/theoretical evidence that local minima are not the problem.

— If the network is “deep” and “wide” enough, we think all local minima are good.
— But it can be hard to get SG to even find a local minimum.

Parameter Initialization

* Parameter initialization is crucial:
— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’t initialize weights too large, it will take too long to learn.

e A traditional random initialization:

— Initialize bias variables to O.
— Sample from standard normal, divided by 10° (0.00001*randn).
— Performing multiple initializations does not seem to be important.

* Popular approach from 10 years ago:
— Initialize with deep unsupervised model (like autoencoders).

Parameter Initialization

* Parameter initialization is crucial:
— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’t initialize weights too large, it will take too long to learn.

* Also common to standardize data:
— Subtract mean, divide by standard deviation, “whiten”, standardize y..

* More recent initializations try to standardize initial z;:
— Use different initialization in each layer.
— Try to make variance of z, the same across layers.
— Use samples from standard normal distribution, divide by sgrt(2*nlnputs).
— Use samples from uniform distribution on [-b,b], where b= A

—m—

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.

e Common approach: manual “babysitting” of the step-size.
— Run SG for a while with a fixed step-size.
— Occasionally measure error and plot progress:

\‘\‘L‘WH Jeremc o(t
/ #\\"NJ—S’ detrenst o

A

—

Crro,

I

S

Time

— If error is not decreasing, decrease step-size.

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.

 More automatic method is Bottou trick:
1. Grab a small set of training examples (maybe 5% of total).
2. Do abinary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

* Several recent methods using a step size for each variable:
— AdaGrad, RMSprop, Adam.

Setting the Step-Size

Stochastic gradient is very sensitive to the step size in deep models.

Bias step-size multiplier: use bigger step-size for the bias variables.
Momentum:

— Add term that moves in previous direction:

| _ -
\/\/6 = w “o(tvr,' (w*) *ﬁt(wé'wt ')
= Keep gory 1"
old direclion
Batch size (number of random examples) also influences results.

Another recent trick is batch normalization:

— Try to “standardize” the hidden units within the random samples as we go.

]

(

Vanishing Gradient Problem

Consider the sigmoid function:

. O .. :
Away from the origin, the gradient is nearly zero.
The problem gets worse when you take the sigmoid of a sigmoid:

|

o
In deep networks, many gradients can be nearly zero everywhere.

Rectified Linear Units (RelLU)

* Replace sigmoid with hinge-like loss (ReLU):

Moty %07 chig

"

|

U

——

' f,,,,, (" WcX'.)

* The gradient is zero or x,, depending on the sign.

— Fixes vanishing gradient problem.
— Gives sparser of activations.

— Not really simulating binary signal, but could be simulating rate coding.

Deep Learning and the Fundamental Trade-Off

* Neural networks are subject to the fundamental trade-off:
— As we increase the depth, training error decreases.
— As we increase the depth, training error no longer approximates test error.

* We want deep networks to model highly non-linear data.
— But increasing the depth leads to overfitting.

* How could GooglLeNet use 22 layers?

— Many forms of regularization and keeping model complexity under control.

Standard Regularization
* We typically add our usual L2-regularizers:

£l w”)= 4 .i (Wb R RO 1) -y +//‘q”w"2+23“wml+/ANW‘Z)IIF+3”M/‘”/’;

e L2-regularization is called “weight decay” in neural network papers.
— Could also use L1-regularization.

 “Hyper-parameter” optimization:
— Try to optimize validation error in terms of A;, A, A3, A,.

* Unlike linear models, typically use multiple types of regularization.

Early Stopping

* Second common type of regularization is “early stopping”:

— Monitor the validation error as we run stochastic gradient.

— Stop the algorithm if validation error starts increasing.

A

accuracy

training accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting
L

Vn$NhAmt€,y |+ VV\H,WL

lookk more ke

)

—

/t/l\OrQR\”y \/0»\ ,loy\l‘}
S’tOr heve.

Dropout

 Dropout is a more recent form of regularization:
— On each iteration, randomly set some x, and z, to zero (often use 50%).

‘
»

/.
{)
':,‘.
\!

-

\

vl)
97,
o

X

s

b
A

N

’
0

\\%
XY
al
o
XD
X
7/

Y

{)
A
Q
8-/
Gt
a
7
&

(/

NS
A
Xt
Y
o
/,4
/)
77

.l
7,
""I;",
X1
g"‘"n'

® e
A
T

(a) Standard Neural Net (b) After applying dropout.
— Encourages distributed representation rather than using specific z..

Convolutional Neural Networks

* Typically use multiple types of regularization:
— L2-regularization.
— Early stopping.
— Dropout.

e Often, still not enough to get deep models working.

* Deep computer vision models are all convolutional neural nets:
— The W(™) are very sparse and have repeated parameters (“tied weights”).
— Drastically reduces number of parameters (speeds up training).

Summary

Autoencoders are unsupervised neural net latent-factor models.
Parameter initialization is crucial to neural net performance.
Optimization and step size are crucial to neural net performance.

Regularization is crucial to neural net performance:
— L2-regularizaiton, early stopping, dropout.

Next time:

— Convolutions, convolutional neural networks, and rating selfies.

